PS:之前那一篇写的太简单了,可能很多操作大家都不懂,这次修改很很多,完全写好了详细一点,顺便说说我用的arm compute library是17.05版的,前几天出了17.06版应该修好了挺多bug,例如17.05版softmax会有overflow的情况,还有一些typo的问题,大家可以尝试用用17.06版,估计过几个月也会有新的版本。而且arm compute library暂时不能train,所以train可能要在tensorflow或者caffe上跑,然后把数据加载到这边,可能arm compute library暂时只优化了验证这边吧。至于如何通过arm compute library写模型就看PO主这篇薄荷!!!传送们在这!!!
正文开始啦!!!
不是通过tensorflow和caffe配置的,是通过ARM Compute Library写的。测试是手机CPU。
首先放出ARM Compute Library的github:
具体的操作方法和基本的examples实现上面都有,这个的确很麻烦,操作了很久。
首先先看看研究一下上面那个东东。PO主放出自己的github:
这个PO主是已经下载好了arm compute library,把写好的文件和权重都放进去啦!本文基本都是按照PO主这个github操作的!但由于之前没有好好将一下详细过程,所以这次讲一讲吧!当然想偷懒的小伙伴也可以直接跑PO主的脚本!下面总结也会说到的!
第一步就要开始build这个库:
scons Werror=1 -j8 debug=0 asserts=1 neon=1 opencl=1 embed_kernels=1 os=android arch=arm64-v8a
在arm compute library中的Documentation的neon是=0,由于是cpu所以这边也是neon=1。而且PO主是用64位滴,大伙注意啦!
用这个建好库之后会多出一个build的文件夹 内面有很多.so这些库。然后再建一个空的opencl库。。。。
aarch64-linux-android-gcc -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
就会多出一个libOpenCL.so
PO主的主要cpp是放在examples中的vgg16_model_arm_compute_library_NEON.cpp
接着是编译:(编译是要aarch64-linux-android-g++这些编译器,自己下载啦!)
aarch64-linux-android-g++ examples/vgg16_model_arm_compute_library_NEON.cpp test_helpers/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -lOpenCL -L/home/zhoupeilin/vgg16-by-ARM-Compute-Library/build/arm_compute -L. -o main -static-libstdc++ -pie
编译好了的文件是main。由于PO主是用android手机跑,所以要按转NDK。NDK的安装和环境变量设置,这些就不是本文要说的啦!自行google啦!
接着就要跑一下PO主的脚本,把权重都放入手机上面:
sh pushweight.sh
权证文件放在vgg16_weight中大约有1.8g的csv文件。。。。。。
最后可以把刚刚编译好的程序push到手机上接着就可以跑啦!!!
adb push main /data/local/tmp/
adb shell /data/local/tmp/main
PO主的手机是红米Note 4X,cpu是高通骁龙625,内存3g可用大约2g,这个程序的手机可用内存最好是2G以上,否测可能会因分配内存不够而死机。
想偷懒的童鞋可以下载好PO主的github然后直接跑两个脚本文件就行啦!记得要插上手机!
sh pushweight.sh
sh main.sh
最后VGG16就不用多说吧,深度学习的都懂。我是在Linux系统交叉编译然后在Android手机跑的程序。
放出我的vgg的代码!!!PO主会在下一篇博客会详细介绍怎样用arm compute lirbrary写模型!!!
代码来啦!!!
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "arm_compute/runtime/CL/CLFunctions.h"
#include "arm_compute/core/Types.h"
#include "test_helpers/Utils.h"
#include <iostream>
#include <sstream>
#include <fstream>
#include <ostream>
#include <sys/time.h>
#include <map>
using namespace arm_compute;
using namespace test_helpers;
float StringToFloat(const std::string & str){
std::istringstream iss(str);
float number;
iss >> number;
return number;
}
void main_neon_vgg16(int argc, const char **argv)
{
/*----------------------------------[init_model_vgg16]-----------------------------------*/
/*----------------------------------BEGIN:[init_Tensor]----------------------------------*/
//init_input_tensor
Tensor input;
//init_conv_1_tensor
Tensor weights_1_1;
Tensor biases_1_1;
Tensor out_1_1;
Tensor act_1_1;
Tensor weights_1_2;
Tensor biases_1_2;
Tensor out_1_2;
Tensor act_1_2;
Tensor pool_1;
//init_conv_2_tensor
Tensor weights_2_1;
Tensor biases_2_1;
Tensor out_2_1;
Tensor act_2_1;
Tensor weights_2_2;
Tensor biases_2_2;
Tensor out_2_2;
Tensor act_2_2;
Tensor pool_2;
//init_conv_3_tensor
Tensor weights_3_1;
Tensor biases_3_1;
Tensor out_3_1;
Tensor act_3_1;
Tensor weights_3_2;
Tensor biases_3_2;
Tensor out_3_2;
Tensor act_3_2;
Tensor weights_3_3;
Tensor biases_3_3;
Tensor out_3_3;
Tensor act_3_3;
Tensor pool_3;
//init_conv_4_tensor
Tensor weights_4_1;
Tensor biases_4_1;
Tensor out_4_1;
Tensor act_4_1;
Tensor weights_4_2;
Tensor biases_4_2;
Tensor out_4_2;
Tensor act_4_2;
Tensor weights_4_3;
Tensor biases_4_3;
Tensor out_4_3;
Tensor act_4_3;
Tensor pool_4;
//init_conv_5_tensor
Tensor weights_5_1;
Tensor biases_5_1;
Tensor out_5_1;
Tensor act_5_1;
Tensor weights_5_2;
Tensor biases_5_2;
Tensor out_5_2;
Tensor act_5_2;
Tensor weights_5_3;
Tensor biases_5_3;
Tensor out_5_3;
Tensor act_5_3;
Tensor pool_5;
//init_fc_6
Tensor weights_6;
Tensor biases_6;
Tensor out_6;
Tensor act_6;
//init_fc_7
Tensor weights_7;
Tensor biases_7;
Tensor out_7;
Tensor act_7;
//init_fc_8
Tensor weights_8;
Tensor biases_8;
Tensor out_8;
Tensor softmax_tensor;
//init_tensor
constexpr unsigned int input_width = 224;
constexpr unsigned int input_height = 224;
constexpr unsigned int input_fm = 3;
const TensorShape input_shape(input_width, input_height, input_fm);
input.allocator() -> init(TensorInfo(input_shape, 1, DataType::F32));
//init_conv_1_1
constexpr unsigned int conv_1_1_kernel_x = 3;
constexpr unsigned int conv_1_1_kernel_y = 3;
constexpr unsigned int conv_1_1_fm = 64;
const TensorShape conv_1_1_weights_shape(conv_1_1_kernel_x, conv_1_1_kernel_y, input_shape.z(), conv_1_1_fm);
const TensorShape conv_1_1_biases_shape(conv_1_1_weights_shape[3]);
const TensorShape conv_1_1_out_shape(input_shape.x(), input_shape.y(), conv_1_1_weights_shape[3]);
weights_1_1.allocator() -> init(TensorInfo(conv_1_1_weights_shape, 1, DataType::F32));
biases_1_1.allocator() -> init(TensorInfo(conv_1_1_biases_shape, 1, DataType::F32));
out_1_1.allocator() -> init(TensorInfo(conv_1_1_out_shape, 1, DataType::F32));
act_1_1.allocator() -> init(TensorInfo(conv_1_1_out_shape, 1, DataType::F32));
//init_conv_1_2
constexpr unsigned int conv_1_2_kernel_x = 3;
constexpr unsigned int conv_1_2_kernel_y = 3;
constexpr unsigned int conv_1_2_fm = 64;
const TensorShape conv_1_2_weights_shape(conv_1_2_kernel_x, conv_1_2_kernel_y, conv_1_1_out_shape.z(), conv_1_2_fm);
const TensorShape conv_1_2_biases_shape(conv_1_2_weights_shape[3]);
const TensorShape conv_1_2_out_shape(conv_1_1_out_shape.x(), conv_1_1_out_shape.y(), conv_1_1_weights_shape[3]);
weights_1_2.allocator() -> init(TensorInfo(conv_1_2_weights_shape, 1, DataType::F32));
biases_1_2.allocator() -> init(TensorInfo(conv_1_2_biases_shape, 1, DataType::F32));
out_1_2.allocator() -> init(TensorInfo(conv_1_2_out_shape, 1, DataType::F32));
act_1_2.allocator() -> init(TensorInfo(conv_1_2_out_shape, 1, DataType::F32));
TensorShape conv_1_pool = conv_1_2_out_shape;
conv_1_pool.set(0, conv_1_pool.x() / 2);
conv_1_pool.set(1, conv_1_pool.y() / 2);
pool_1.allocator() -> init(TensorInfo(conv_1_pool, 1, DataType::F32));
//init_conv_2_1
constexpr unsigned int conv_2_1_kernel_x = 3;
constexpr unsigned int conv_2_1_kernel_y = 3;
constexpr unsigned int conv_2_1_fm = 128;
const TensorShape conv_2_1_weights_shape(conv_2_1_kernel_x, conv_2_1_kernel_y, conv_1_pool.z(), conv_2_1_fm);
const TensorShape conv_2_1_biases_shape(conv_2_1_weights_shape[3]);
const TensorShape conv_2_1_out_shape(conv_1_pool.x(), conv_1_pool.y(), conv_2_1_weights_shape[3]);
weights_2_1.allocator() -> init(TensorInfo(conv_2_1_weights_shape, 1, DataType::F32));
biases_2_1.allocator() -> init(TensorInfo(conv_2_1_biases_shape, 1, DataType::F32));
out_2_1.allocator() -> init(TensorInfo(conv_2_1_out_shape, 1, DataType::F32));
act_2_1.allocator() -> init(TensorInfo(conv_2_1_out_shape, 1, DataType::F32));
//init_conv_2_2
constexpr unsigned int conv_2_2_kernel_x = 3;
constexpr unsigned int conv_2_2_kernel_y = 3;
constexpr unsigned int conv_2_2_fm = 128;
const TensorShape conv_2_2_weights_shape(conv_2_2_kernel_x, conv_2_2_kernel_y, conv_2_1_out_shape.z(), conv_2_2_fm);
const TensorShape conv_2_2_biases_shape(conv_2_2_weights_shape[3]);
const TensorShape conv_2_2_out_shape(conv_2_1_out_shape.x(), conv_2_1_out_shape.y(), conv_2_2_weights_shape[3]);
weights_2_2.allocator() -> init(TensorInfo(conv_2_2_weights_shape, 1, DataType::F32));
biases_2_2.allocator() -> init(TensorInfo(conv_2_2_biases_shape, 1, DataType::F32));
out_2_2.allocator() -> init(TensorInfo(conv_2_2_out_shape, 1, DataType::F32));
act_2_2.allocator() -> init(TensorInfo(conv_2_2_out_shape, 1, DataType::F32));
TensorShape conv_2_pool = conv_2_2_out_shape;
conv_2_pool.set(0, conv_2_pool.x() / 2);
conv_2_pool.set(1, conv_2_pool.y() / 2);
pool_2.allocator() -> init(TensorInfo(conv_2_pool, 1, DataType::F32));
//init_conv_3_1
constexpr unsigned int conv_3_1_kernel_x = 3;
constexpr unsigned int conv_3_1_kernel_y = 3;
constexpr unsigned int conv_3_1_fm = 256;
const TensorShape conv_3_1_weights_shape(conv_3_1_kernel_x, conv_3_1_kernel_y, conv_2_pool.z(), conv_3_1_fm);
const TensorShape conv_3_1_biases_shape(conv_3_1_weights_shape[3]);
const TensorShape conv_3_1_out_shape(conv_2_pool.x(), conv_2_pool.y(), conv_3_1_weights_shape[3]);
weights_3_1.allocator() -> init(TensorInfo(conv_3_1_weights_shape, 1, DataType::F32));
biases_3_1.allocator() -> init(TensorInfo(conv_3_1_biases_shape, 1, DataType::F32));
out_3_1.allocator() -> init(TensorInfo(conv_3_1_out_shape, 1, DataType::F32));
act_3_1.allocator() -> init(TensorInfo(conv_3_1_out_shape, 1, DataType::F32));
//init_conv_3_2
constexpr unsigned int conv_3_2_kernel_x = 3;
constexpr unsigned int conv_3_2_kernel_y = 3;
constexpr unsigned int conv_3_2_fm = 256;
const TensorShape conv_3_2_weights_shape(conv_3_2_kernel_x, conv_3_2_kernel_y, conv_3_1_out_shape.z(), conv_3_2_fm);
const TensorShape conv_3_2_biases_shape(conv_3_2_weights_shape[3]);
const TensorShape conv_3_2_out_shape(conv_3_1_out_shape.x(), conv_3_1_out_shape.y(), conv_3_2_weights_shape[3]);
weights_3_2.allocator() -> init(TensorInfo(conv_3_2_weights_shape, 1, DataType::F32));
biases_3_2.allocator() -> init(TensorInfo(conv_3_2_biases_shape, 1, DataType::F32));
out_3_2.allocator() -> init(TensorInfo(conv_3_2_out_shape, 1, DataType::F32));
act_3_2.allocator() -> init(TensorInfo(conv_3_2_out_shape, 1, DataType::F32));
//init_conv_3_3
constexpr unsigned int conv_3_3_kernel_x = 3;
constexpr unsigned int conv_3_3_kernel_y = 3;
constexpr unsigned int conv_3_3_fm = 256;
const TensorShape conv_3_3_weights_shape(conv_3_3_kernel_x, conv_3_3_kernel_y, conv_3_2_out_shape.z(), conv_3_3_fm);
const TensorShape conv_3_3_biases_shape(conv_3_3_weights_shape[3]);
const TensorShape conv_3_3_out_shape(conv_3_2_out_shape.x(), conv_3_2_out_shape.y(), conv_3_3_weights_shape[3]);
weights_3_3.allocator() -> init(TensorInfo(conv_3_3_weights_shape, 1, DataType::F32));
biases_3_3.allocator() -> init(TensorInfo(conv_3_3_biases_shape, 1, DataType::F32));
out_3_3.allocator() -> init(TensorInfo(conv_3_3_out_shape, 1, DataType::F32));
act_3_3.allocator() -> init(TensorInfo(conv_3_3_out_shape, 1, DataType::F32));
TensorShape conv_3_pool = conv_3_3_out_shape;
conv_3_pool.set(0, conv_3_pool.x() / 2);
conv_3_pool.set(1, conv_3_pool.y() / 2);
pool_3.allocator() -> init(TensorInfo(conv_3_pool, 1, DataType::F32));
//init_conv_4_1
constexpr unsigned int conv_4_1_kernel_x = 3;
constexpr unsigned int conv_4_1_kernel_y = 3;
constexpr unsigned int conv_4_1_fm = 512;
const TensorShape conv_4_1_weights_shape(conv_4_1_kernel_x, conv_4_1_kernel_y, conv_3_pool.z(), conv_4_1_fm);
const TensorShape conv_4_1_biases_shape(conv_4_1_weights_shape[3]);
const TensorShape conv_4_1_out_shape(conv_3_pool.x(), conv_3_pool.y(), conv_4_1_weights_shape[3]);
weights_4_1.allocator() -> init(TensorInfo(conv_4_1_weights_shape, 1, DataType::F32));
biases_4_1.allocator() -> init(TensorInfo(conv_4_1_biases_shape, 1, DataType::F32));
out_4_1.allocator() -> init(TensorInfo(conv_4_1_out_shape, 1, DataType::F32));
act_4_1.allocator() -> init(TensorInfo(conv_4_1_out_shape, 1, DataType::F32));
//init_conv_4_2
constexpr unsigned int conv_4_2_kernel_x = 3;
constexpr unsigned int conv_4_2_kernel_y = 3;
constexpr unsigned int conv_4_2_fm = 512;
const TensorShape conv_4_2_weights_shape(conv_4_2_kernel_x, conv_4_2_kernel_y, conv_4_1_out_shape.z(), conv_4_2_fm);
const TensorShape conv_4_2_biases_shape(conv_4_2_weights_shape[3]);
const TensorShape conv_4_2_out_shape(conv_4_1_out_shape.x(), conv_4_1_out_shape.y(), conv_4_2_weights_shape[3]);
weights_4_2.allocator() -> init(TensorInfo(conv_4_2_weights_shape, 1, DataType::F32));
biases_4_2.allocator() -> init(TensorInfo(conv_4_2_biases_shape, 1, DataType::F32));
out_4_2.allocator() -> init(TensorInfo(conv_4_2_out_shape, 1, DataType::F32));
act_4_2.allocator() -> init(TensorInfo(conv_4_2_out_shape, 1, DataType::F32));
//init_conv_4_3
constexpr unsigned int conv_4_3_kernel_x = 3;
constexpr unsigned int conv_4_3_kernel_y = 3;
constexpr unsigned int conv_4_3_fm = 512;
const TensorShape conv_4_3_weights_shape(conv_4_3_kernel_x, conv_4_3_kernel_y, conv_4_2_out_shape.z(), conv_4_3_fm);
const TensorShape conv_4_3_biases_shape(conv_4_3_weights_shape[3]);
const TensorShape conv_4_3_out_shape(conv_4_2_out_shape.x(), conv_4_2_out_shape.y(), conv_4_3_weights_shape[3]);
weights_4_3.allocator() -> init(TensorInfo(conv_4_3_weights_shape, 1, DataType::F32));
biases_4_3.allocator() -> init(TensorInfo(conv_4_3_biases_shape, 1, DataType::F32));
out_4_3.allocator() -> init(TensorInfo(conv_4_3_out_shape, 1, DataType::F32));
act_4_3.allocator() -> init(TensorInfo(conv_4_3_out_shape, 1, DataType::F32));
TensorShape conv_4_pool = conv_4_3_out_shape;
conv_4_pool.set(0, conv_4_pool.x() / 2);
conv_4_pool.set(1, conv_4_pool.y() / 2);
pool_4.allocator() -> init(TensorInfo(conv_4_pool, 1, DataType::F32));
//init_conv_5_1
constexpr unsigned int conv_5_1_kernel_x = 3;
constexpr unsigned int conv_5_1_kernel_y = 3;
constexpr unsigned int conv_5_1_fm = 512;
const TensorShape conv_5_1_weights_shape(conv_5_1_kernel_x, conv_5_1_kernel_y, conv_4_pool.z(), conv_5_1_fm);
const TensorShape conv_5_1_biases_shape(conv_5_1_weights_shape[3]);
const TensorShape conv_5_1_out_shape(conv_4_pool.x(), conv_4_pool.y(), conv_5_1_weights_shape[3]);
weights_5_1.allocator() -> init(TensorInfo(conv_5_1_weights_shape, 1, DataType::F32));
biases_5_1.allocator