- 博客(34)
- 收藏
- 关注
原创 【机器学习】Softmax推导
LR可以看成是Softmax的特例。LR主要是用于二分类,如果面临的是多分类问题,可以用Softmax。Softmax通常也是深度学习图像识别网络的最后一层。
2017-11-01 20:41:05 514
原创 Python全排列
比如我们有一个列表[1,2,3],想要得到里面所有的排列组合的可能。 按照排列组合的只是,先固定住0的位置,将[2,3]排列组合,再接到[1]的后面。 这显然是递归的思想。
2017-10-30 17:19:16 1177
原创 关于RCNN中Bounding-box regression的个人理解
前言RCNN可以说是深度学习应用到目标检测领域一个不小的贡献。最近看了RNN的文章,对里面的Bounding-box regression回归不甚理解,google一番,把学到的东西写在这里。 参考的文章。为啥要回归鉴于bounding box太长,下面简写为bb,bounding box regression 简写为bbr。首先,原始的bb是用selective research选出来的,这相当
2017-10-10 17:04:00 7681 9
原创 Mongodb数据库去重
只写干货写了个爬虫,爬了点数据。由于没有做好爬虫重启和数据库检索,爬取的数据有重复。如何查看未重复数据的数量:进入命令行,切换到mongo shell;use 你的数据库名;db.要操作的表名.distinct("针对数据进行区分的键名").length编写一个去重的脚本mongodb 在内部是用js来管理的。所以,写一个js文件:var duplica
2017-09-01 16:53:02 864
原创 第3章 随机变量的数字特征
第3章 随机变量的数字特征[TOC] 随机变量的数字特征,是某些由随机变量的分布所决定的常数,它刻画了随机变量(或者说,刻画了其分布)的某一方面的性质。3.1 数学期望(均值)与中位数3.1.1 数学期望的定义 设随机变量X只能取有限个可能值a1,a2,⋯,am a_1,a_2,\cdots,a_m ,其概率分布为P(X=ai)=pi(i=1,⋯,m) P(X=a_i)=p_i (i=1,\
2017-05-29 22:18:44 1686
原创 Scrapy实战-爬取某博客聚合网站信息
前言前段时间看了一些介绍Scrapy及用Scarpy进行抓取网络信息的博客。总体来说信息量还是过少,对于一个成熟的框架来说,只看博客还是不够。所以还是看了一遍官方文档。看完后,总要做点什么来练练手,正好前段时间在网上闲逛的时候找到了一个国内某大神做的某国外博客的聚合类网站。里面涉及到大量博客地址。点击某博客后,会列出该博客下所有视频地址。其实该网站也是一个爬虫。将所有视频下载下来是不现
2016-10-11 11:31:25 1416
原创 关于Python中深拷贝与浅拷贝的理解(三)---监视数据是否变化
在上两篇博客中,已经找到了代码出现bug的原因并进行了调试,但调试的效率和结果并不满意,必须要进行一定的改进。思路改进的思路无非是让程序能够自动识别原始数据或计算过程中的结果数据是否改变。这样即可得知在哪一步、哪一个函数对数据进行了改动。(其实用pycharm调试即可,更简单)对于数据是否改动,可以通过数据的id进行判断初始的思路是这样:开一个监视线程,不断检测需要监测
2015-11-10 21:56:36 651
原创 关于Python中深拷贝与浅拷贝的理解(二)---排bug
上一篇中介绍了Python中深拷贝与浅拷贝的区别。既然明白了bug所在,talk is cheap,开撸。既然是输入数据遭到了修改,那第一思路是将所有出现引用输入数据的地方均加上copy.deepcopy(),使每次在计算时数据可以随便改动,但原始数据保持不变。但作为一个强迫症来讲,每个地方的引用都加上深拷贝,这对空间和时间的消耗肯定都有增加(虽然对于我的小软件并没有什么明显的区别),所以
2015-11-10 21:05:17 635
原创 关于Python中深拷贝与浅拷贝的理解(一)---概念
缘由用Python也有很长时间了,一直在做科学计算和爬虫采集方面的东西。自己的毕业论文涉及到编写一个科学计算的软件,也是用Python编写。界面采用PyQt。软件的主体前段时间已经写好,最近在试算的时候出现两个问题:同一种计算方法,点击计算两次,结果会变,后面再点击几次结果保持不变不同的计算方法,第一次改变计算方法可能结果会变,后面再点击几次结果保持不变这明显是个bug啊想
2015-11-10 20:15:36 7922 2
原创 Python画直线
import matplotlib.pyplot as pltimport numpy as npbeita = 1gama = 0.5x = np.linspace(0, 4, 1000)xx = x*9.8*0.6OH = (0.33/(1-0.33)+beita)*(14.12-0.73*4.68)+0.73*4.68Oh = (0.33/(1-0.33)+gama)*(14.
2014-06-25 19:09:01 22517
原创 Python解非线性方程
# encoding: utf-8from scipy.optimize import fsolvefrom numpy import *beita = 1gama = 1#以下为Mohr-Columb准则计算# def f(x):# OH = (0.33/(1-0.33)+beita)*(14.12-0.73*4.68)+0.73*4.68# Oh = (0.3
2014-06-25 19:05:08 3676
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人