第3章 随机变量的数字特征

本章介绍了随机变量的数字特征,包括数学期望(均值)的定义和性质,中位数的概念,以及方差和矩的作用。此外,还讨论了协方差和相关系数衡量变量间关系的方式,以及大数定理和中心极限定理在概率论中的重要性。
摘要由CSDN通过智能技术生成

第3章 随机变量的数字特征

[TOC]
随机变量的数字特征,是某些由随机变量的分布所决定的常数,它刻画了随机变量(或者说,刻画了其分布)的某一方面的性质。

3.1 数学期望(均值)与中位数

3.1.1 数学期望的定义

设随机变量X只能取有限个可能值 a1,a2,,am ,其概率分布为 P(X=ai)=pi(i=1,,m) 。则X的数学期望,记为E(X)或EX,定义为:

E(X)=a1p1+a2p2++ampm=aipi.

数学期望也常被称为 均值
当X取无穷多个值时, aipi 的上界取无穷,这时候要求这个级数是收敛的。这就要求:
i=0|ai|pi<

对于连续型随机变量的情况,设X是一个连续型随机变量,如果:

|x|f(x)dx<

则X的数学期望为:
E(X)=xf(x)dx

数学期望是由随机变量的分布完全决定的。

3.1.2 数学期望的性质

若干个随机变量和的期望等于各变量的期望之和,即:

E(X1+X2++Xn)=E(X1)+E(X2)++E(Xn).


若干个独立随机变量之积的期望等于各变量的期望之积,即:

E(X1X2Xn)=E(X1)E(X2)E(Xn).

注意这里要求各个随机变量是相互独立的。


设随机变量X为离散型,有分布函数 P(X=ai)=pi(i=1,2,) ;或者为连续型,有概率密度函数 f(x) 。则:

E(g(x))=ig(ai)pii|g(ai)|pi<


E(g(X))=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值