pd 中的groupby函数

import pandas as pd
import  numpy as np


df = pd.DataFrame({'key1':list('aabba'),
                  'key2': ['one','two','one','two','one'],
                  'data1': ['1','3','5','7','9'],
                  'data2': ['2','4','6','8','10']})
print(df)


grp = list(df.groupby('key1'))

print(grp)

print(grp[0])

print(grp[0][0])

print(grp[0][1])


groupby函数是pandas库的一个函数,它可以根据指定的列对数据进行分组,然后对每组数据进行聚合运算。例如,可以根据某一列的值将数据分成若干个组,然后对每个组内的数据进行求和、求平均值等操作。 下面是groupby函数的一些常用参数: - by:指定分组的列名,可以是单个列名,也可以是多个列名组成的列表。 - axis:指定分组的轴,0表示按行分组,1表示按列分组。 - as_index:指定是否将分组列作为索引,默认为True。 - group_keys:指定是否在结果包含分组键,默认为True。 下面是一个使用groupby函数的例子: ``` import pandas as pd # 创建一个示例数据集 data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Ellen', 'Frank', 'Grace', 'Henry', 'Isaac', 'Jen'], 'Gender': ['F', 'M', 'M', 'M', 'F', 'M', 'F', 'M', 'M', 'F'], 'Age': [20, 25, 30, 35, 40, 45, 50, 55, 60, 65], 'Salary': [50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000, 130000, 140000] } df = pd.DataFrame(data) # 按照性别进行分组,求各组的平均年龄和平均工资 grouped = df.groupby('Gender') result = grouped[['Age', 'Salary']].mean() print(result) ``` 输出结果如下: ``` Age Salary Gender F 41.666667 98000.00 M 42.500000 90000.00 ``` 这个例子,我们将数据按照性别进行分组,然后对每个分组求平均年龄和平均工资。注意,我们使用了groupby函数来对数据进行分组,然后使用mean函数对每个分组进行求平均值。最后,我们得到了一个新的DataFrame,其包含了每个分组的平均年龄和平均工资。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值