自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(161)
  • 资源 (4)
  • 收藏
  • 关注

原创 数据可视化-16. 日历图

聚合日历图将一段时间内的数据进行汇总,然后以周、月或季度为单位进行展示。在健康领域记录每天的运动时长、步数或其他健康指标。日历图通常以天为粒度,不适合展示更细粒度(如小时、分钟)或更粗粒度(如季度、年度)的数据。当数据量非常大时(例如分析多年的日数据),日历图可能显得杂乱,难以区分颜色和模式。如果数据的周期性超出一年(如多年的数据),日历图可能无法有效展示全局趋势。确定特定时间段(如某个月、某一年)的模式和趋势,例如流量高峰期或淡季。通过颜色对比,快速定位数据的异常点,例如某天的数值特别高或特别低。

2024-12-27 13:21:10 1406

原创 数据可视化-15. 地理散点图

地理散点图是特殊的散点图,用于在地理空间上展示数据点的分布情况。它结合了地理地图和散点图的特点,帮助人们直观地理解数据与地理位置之间的关系。地理散点图具有以下特点以地图(二维、三维或者卫星图都可以)作为背景,数据点通常用经纬度表示,显示在地理坐标系上,它主要揭示空间关系。每个数据点代表一个地理位置的特定属性(如人口、销售额、温度等)。点的大小、颜色、形状等可以用来表示不同数据维度。可结合交互功能实现动态扩展,如缩放、点击查看详情、筛选等,方便深入分析。

2024-12-24 11:00:00 798

原创 数据可视化-14. 桑基图

箭头的宽度表示流量的大小或比例,且同一颜色线条前后宽度一致,无论数据怎么流动,总数值保持不变,体现了数据的“能量守恒”。例如,在企业财务分析中,通过桑基图可以清晰地展示收入来源、支出类型以及盈利转化过程中的流向和占比,从而帮助企业发现利润来源、成本结构和资金回收的机会。通过可视化展示环境污染物的排放源、迁移路径和影响对象,可以更好地了解污染物的传播机制、评估环境风险,并制定相应的环境保护措施。通过跟踪原材料的来源、制造过程中的变化和消耗,以及最终产品的分发和销售情况,企业可以洞察供应链中的瓶颈和改进潜力。

2024-12-24 08:00:00 1635

原创 数据可视化-13. 密度图

密度图(Density Plot),也称为概率密度图或核密度估计图(Kernel Density Estimate, KDE),它通过计算数据的密度估计来描绘数据在数值范围内的分布情况,是一种用于展示数据分布的平滑曲线图,能够直观地显示出数据在不同区间的聚集程度和变化趋势。它是直方图的一种替代方法,但比直方图更平滑,适合展示数据分布的连续趋势。一般说来,密度图通过核密度估计方法,将数据点分布转换为连续的概率密度函数(PDF)。每个数据点被视为一个分布,通过核函数(通常是高斯核)生成局部密度。

2024-12-23 13:30:00 2473

原创 数据可视化-12. 直方图

直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。它是一个连续变量(定量变量)的概率分布的估计,由卡尔·皮尔逊(Karl Pearson)首先引入。

2024-12-23 08:00:00 1878

原创 数据可视化-11. 面积图、堆叠面积图、百分比堆叠面积图

面积图(Area Chart),又称区域图,是在折线图的基础上发展而来的。它将折线图中折线与自变量坐标轴(通常是X轴)之间的区域使用颜色或纹理进行填充,形成一个可以更好突出趋势信息的填充区域,即“面积”,适合展示数据的。此外,根据呈现方式的不同,面积图还可以分为二维面积图和三维面积图。面积图一般由以下几部分构成。

2024-12-22 12:00:00 2529

原创 数据可视化-10. 传统饼图和动态可选择型饼图

饼图(Pie Chart)是一种的数据可视化图表,用于表示。它通过一个圆形将数据划分为多个扇形区域,区域的角度或面积反映每部分数据的大小,占比越大,扇形面积越大。

2024-12-22 09:00:00 547

原创 数据可视化-9. 瀑布图

瀑布图(Waterfall Chart)是一种用于显示数据的的图表,通过柱状条的堆叠,将数据的变化过程以类似瀑布流水的形式直观地呈现出来,展示了一个初始值在经过一系列的增加或减少的中间运算(如收入的各项增减因素、成本的构成变化等)后如何达到最终值。

2024-12-21 08:30:00 1154

原创 数据可视化-8. 气泡图

气泡图常用于需要展示多变量关系的场景,例如:展示多维信息:气泡图能够同时展示多个变量之间的关系,使得数据分析和信息传达更加直观和高效。如展示销售额(X轴)、利润(Y轴)、市场规模(气泡大小)。识别趋势与模式:通过气泡的大小和颜色,可以轻松地识别数据中的趋势、模式和异常值。如人口统计中用气泡大小代表国家人口,X轴表示GDP,Y轴表示人均收入。强调异常值:当一个气泡远离其他气泡时,它可能表示一个数据点与其他点有显著不同的值,这有助于进一步研究和分析异常。

2024-12-20 13:00:00 816

原创 数据可视化-7. 箱线图

箱线图(Boxplot),又称为盒须图,是一种用于统计数据分布分析的图表。它可以直观地展示数据的分布特征、集中趋势和离散程度,并能有效识别异常值。

2024-12-20 08:00:00 1043

原创 数据可视化-6. 旭日图

当 branchvalues="total",则意味着旭日图中每个父节点和子节点之间是完整对应的关系,比如父节点销量 100,则对应的两个子节点线下销量+线上销量必须等于100,否则也会出错。在展示产品分类的多层级销售数据时,旭日图能够将多个层次的产品类别有序地呈现在一个圆形区域内,用户可以方便地观察到各个层次的数据情况,有助于制定更精准的销售策略。例如,从公司整体出发,第一层圆环可以按照不同的部门划分扇区,表示各部门的资源占比,第二层圆环则可以进一步展示每个部门内部的资源细分情况。旭日图适用于需要展示。

2024-12-19 15:30:00 1390

原创 数据可视化-5. 树形图

树形图具有层次清晰、结构直观、易于扩展、支持多种表示方式、便于查找和定位、支持数据可视化以及易于理解和沟通等特点。思维导图通常用于表示思维过程、想法和概念之间的关系,而树形图则更侧重于展示层级和分类关系。这有助于项目经理和团队成员清晰地了解项目的整体进度和各个任务之间的关系。在软件开发中,树形图可以用来表示软件的功能结构、模块划分和接口关系。复杂网络结构中,如社交网络、互联网链接等,树形图可以用来表示网络中的节点和连接关系。在家族研究中,树形图可以用来表示家族成员之间的关系,如父母、子女、兄弟姐妹等。

2024-12-19 08:00:00 1053

原创 数据可视化-4. 漏斗图

漏斗图通常从上到下排列,最上方表示初始数据(如曝光量),逐渐向下收窄,代表数据在各个阶段的逐渐减少。可以绘制多个漏斗图进行对比分析,以发现不同时间段或不同渠道之间的差异和潜在问题。

2024-12-18 15:30:00 1372

原创 数据可视化-3. 散点图

散点图具有很高的灵活性,可以根据数据的实际情况和分析需求进行定制。例如,可以通过调整点的颜色、形状和大小来展示不同的数据类别或维度,或者使用不同的坐标轴来展示不同的数据范围。散点图通过点的位置和分布来展示数据之间的关系,这种直观性使得用户能够迅速理解数据的特征和规律。,但通过使用不同颜色、形状或大小的标记,用户可以同时观察多个指标之间的关系。这些异常值可能是数据采集或记录过程中的错误,也可能是具有特殊意义的关键数据。散点图还可以展示数据的分布情况,包括数据的集中程度、分散程度以及是否存在聚类现象等。

2024-12-18 09:45:00 1182

原创 数据可视化-2. 条形图

特别是当数据被分组并表示为多个条形时,用户可以观察到数据在不同组别之间的分布特征,如哪些组别的数据较为集中,哪些组别较为分散。在条形图中,可以通过调整条形的颜色、宽度或高度来强调特定的数据点。特别是当需要同时展示多个时间点的数据时,条形图可以提供一个清晰且易于理解的视角。条形图因其简单易懂的特点,常被用作数据可视化教育的基础工具。通过条形图,学生可以直观地理解数据之间的关系,学习如何解读和分析数据。通过将不同类别的数据表示为不同长度的条形,用户可以迅速识别出哪些类别具有较高的数值,哪些类别较低。

2024-12-17 13:42:30 853

原创 数据可视化-1. 折线图

例如,在市场营销中,企业可以使用折线图来比较不同产品的销售趋势,从而发现哪些产品的销售表现较好,哪些产品需要改进。通过观察折线的斜率,可以判断数据变化的快慢程度。同时,折线图还能体现数据变化的幅度,从而帮助用户识别数据的长期趋势和短期波动。折线图能够清晰地展示数据随时间的变化趋势,可以帮助用户快速了解数据在不同时间点的走势,从而进行趋势分析和预测。通过观察折线的走势,可以直观地了解数据随时间的波动和变化模式,例如季节性变化或周期性波动。通过观察折线图中的数据点分布,用户可以识别出数据中的异常值或异常波动。

2024-12-17 13:30:18 1031

原创 大模型试用-t5-base

T5(Text-to-Text Transfer Transformer)是 Google 于 2020 年提出的一种通用文本到文本生成模型,详细介绍于论文 "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"。T5 是一个高度灵活的模型,能够统一处理各种 NLP 任务,例如翻译、摘要、问答、文本分类等。

2024-11-21 10:25:45 565

原创 10. DAX 时间函数之实战

在实际代码过程中,总会遇到各种需求,往往需要一个或者多个函数一起实现目的。在下面的过程中,我尽量使用简洁而优美的代码,来实现各个目的。首先准备数据,使用中的 GENERATE CALENDAR 生成一个,从 2017 年 1 月 1 日到 2025 年 12 月 31 日,如下图再创建一个表“测试数据”,其中有Date域,为日期格式。

2024-10-22 14:46:46 521

原创 Pandas 模块-操纵数据(12)-处理字符串数据

我们实际处理数据时候,往往要对原始数据进行很多精细化处理,下面减少一些常用的处理字符串的方式。

2024-05-22 11:19:26 1329

原创 7. 3 层神经网络的实现和输出层的激活函数

1 层神经元到 2 层神经元,其实非常类似输入层数据到 1 层神经元。在神经网络中,输出层的激活函数,要根据求解问题的性质决定。一般的回归问题可以使用恒等函数,二元分类问题可以使用 sigmoid 函数,多元分类问题可以使用 softmax 函数。下面我们看一下简单的 3 层神经网络,它由输入层、1层神经元、2层神经元、输出层神经元组成。2 层神经元到 输出层神经元,区别在于它的激活函数不一样。y 曲线不是平稳上升的,在很大的区间范围内,它都接近于 0 ,只是在数据区间的末端,才迅猛上升,无限接近于 1。

2024-05-17 11:12:50 967

原创 6. 神经网络的内积

z=w⋅x+b 其中,𝑤w 是权重向量,𝑥x 是输入向量,𝑏b 是偏置,𝑧z 是线性变换的结果。: 在一些特殊的应用场合,如推荐系统和自然语言处理中的词向量(word embedding)表示中,内积常用来计算向量之间的相似度或相异度。

2024-05-14 11:23:00 924

原创 5.神经网络-激活函数

在下面的文章中提到了激活函数,事实上激活函数有很多种,本文介绍两种最常见的。另外文章中可能会用到一些 numpy、Matplotlib 模块的知识,同学们如果没有了解可以看看下面的文章。

2024-05-11 15:38:32 1136 1

原创 4. 从感知机到神经网络

不过在感知机中设定权重的工作是由人工来做的,而设定合适的,符合预期的输入与输出的权重,是一项非常繁重的工作。从下图可以看到,最左边的即输入层, 0 层;其中只有输入层、中间层具有权重,可以称之为 2 层网络,也可以按照网络的级数称之为 3 层网络。请注意,此处激活函数以阈值为界,一旦输入超过阈值,就切换输出,这样的函数称之为“阶跃函数”。感知机是选择了阶跃函数,如果感知机选择了其他函数作为激活函数,那么就进入了神经网络的世界了!有了激活函数的引入,原来的感知机图,就可以转换为神经元图。

2024-05-10 16:58:01 472

原创 3. 多层感知机算法和异或门的 Python 实现

单层感知机只能表示线性空间,多层感知机就可以表示非线性空间。多层感知机在理论上可以表示计算机。

2024-05-10 16:01:23 1006 2

原创 2. 感知机算法和简单 Python 实现

感知机1957年由Rosenblatt提出,是神经网络与支持向量机的基础。它是最简单最基础的机器学习算法,可以用于处理最简单的二分类任务,并且模型和学习算法都十分简单。感知机是具有输入和输出的算法。给定一个或者输入之后,将输出一个既定的值。感知机接收多个输入信号,输出一个信号。输入信号可以用 0 或者 1 表示,0 表示 “不传递信号”,1 表示 “传递信号”。从多个输入信号到一个输出信号,即感知机算法。最简单的感知机算法可以理解为 1 个输入信号 x,输出 y;算法即 y = x。

2024-05-10 11:10:50 1237

原创 1. 介绍 Matplotlib

Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。在Python中安装Matplotlib库通常使用pip工具。以下是安装Matplotlib的步骤:打开终端(在Windows上是命令提示符或PowerShell,在MacOS或Linux上是终端)。如果你使用的是 Python3,可能需要使用pip3而不是pip如果你在使用Jupyter Notebook,你可能想要使用%pip或!pip!

2024-05-10 09:42:07 719

原创 Pandas 模块-操纵数据(11)-二元运算--超级add、sub、mul、div、mod、pow等等

前面说过 Pandas 模块最大的优势是数据计算非常快,尤其是在希望对每个数据进行相同数据操作时候;如果只是会Python的基本操作,免不了一顿 for 循环,但是使用 Pandas 模块,那么代码表现就优雅多了,也快多了。今天我们熟悉一下 DataFrame 自带的二元运算,从我们熟悉的加减乘除开始吧。

2024-04-25 17:01:56 1474

原创 9. DAX 时间函数-- DATE 日期--七七八八

函数名目的语法返回值UTCTODAY返回当前的 UTC (世界协调时)日期。查看现在的 UTC 时间标量 一个日期时间值。TODAY以日期格式返回当前时间TODAY()标量 一个日期时间值。EDATE将日期向前或向后平移指定的月份数。EDATE ( <日期>, <月份数> )标量 一个日期值EOMONTH返回将日期向前或向后平移指定的月份之后的最后一天。EOMONTH ( <日期>, <月份数> )标量 一个日期值DATEVALUE。

2024-04-22 18:01:03 851

原创 8. DAX 时间函数-- DATE 日期--OPENINGBALANCEMONTH、OPENINGBALANCEQUARTER、OPENINGBALANCEYEAR

当起始日期是 2024-02-01 时候,6 个度量指标, 3 个函数结果都是 空白,这是因为测试数据最早就是 2024-02-01,没有比这个更早的数据了。当起始日期是 2024-04-09,OPENINGBALANCEMONTH 是 60、OPENINGBALANCEQUARTER 是 60,即2024-3-31 的值。60当起始日期是 2024-09-09、2024-09-29 时候,OPENINGBALANCEMONTH 是 213 即2024/8/31 的值。

2024-04-22 15:55:23 1059

原创 7. DAX 时间函数-- DATE 日期--TOTALMTD、TOTALQTD、TOTALYTD

函数名目的语法返回值TOTALMTD计算当前上下文中该月份至今的表达式的值。TOTALMTD ( <表达式>, <日期列>, [<筛选器>] )标量 表示表达式的标量值,在“日期”中给定日期,计算当前月份至今的日期。TOTALQTD计算当前上下文中该季度至今的日期的表达式的值。TOTALQTD ( <表达式>, <日期列>, [<筛选器>] )返回表示“表达式”的标量值,该值计算到目前为止当前季度中的所有日期(假定当前日期处于“日期”)。TOTALYTD。

2024-04-19 11:29:39 2087

原创 6. DAX 时间函数-- DATE 日期--FIRSTDATE \LASTDATE\DATESMTD\DATESQTD\DATESYTD

FIRSTDATE 、LASTDATE 只适用于单独找出上下文的日期值,如果和 CALCULATE 系列函数使用,那么它返回的其实是上下文中的所有非空值,而不是字面意思上的第一个、最后一个! DATESMTD、DATESQTD、DATESYTD 三个函数创建新表时候,是依次创建出该月份至今、该季度至今、该年至今的日期列表。但是请注意,所谓的该月份,是上下文数据中最靠后的数据,而不是当前数据!

2024-04-18 17:49:13 1576

原创 5. DAX 时间函数-- DATE 日期--PREVIOUS/NEXT DAY/MONTH/QUARTER/YEAR

PREVIOUSDAY、PREVIOUSMONTH、PREVIOUSQUARTER、PREVIOUSYEAR、NEXTDAY、NEXTMONTH、NEXTQUARTER、NEXTYEAR 这六个函数一看就是配套使用的。

2024-04-17 09:41:25 1635

原创 4. DAX 时间函数-- DATE 日期--START/END OF MONTH/QUARTER/YEAR

STARTOFMONTH、STARTOFQUATER、STARTOFYEAR、ENDOFMONTH、ENDOFQUARTER、ENDOFYEAR 这六个函数都属于时间聚合函数,猛一看意图非常明显,就是找出当月、当季、当年、月末、季度末、年末的那一个日期,让我们来试试到底是不是这样。

2024-04-17 09:12:09 2159

原创 3. DAX 时间函数-- DATE 日期--一生二,二生三,三生万物

在数据分析过程中,经常需要从一个数据推到另外一个数据,日期数据也是如此,需要从一个日期推到另外一个相关的日期,或者从一群日期推到另外一个相关的日期/一群相关的日期。这一期说的就是日期之间彼此推衍的函数,会比之前复杂不少。

2024-04-10 09:31:54 2743 1

原创 2. DAX 时间函数--围绕着 DATE 日期格式的那部分

/ 2,一周从星期一 (1) 开始,到星期日 (7) 结束,编号 1 到 7。// 1,一周从星期日 (1) 开始,到星期六 (7) 结束,编号 1 到 7。// 3,一周从星期一 (0) 开始,到星期日 (6) 结束,编号 0 到 6。当使用下列链接中的代码生成日期表之后,我们可以围绕着DATE 日期尽情的使用相关基础函数。a) WeekNumberType 参数控制每周的开始时间,返回此周在一年中的编号。b) WeekDayType 参数控制每周的开始时间,返回周几的编号。

2024-04-08 17:43:41 563

原创 1. DAX 时间函数--生成日期表

在讲 DAX 时间函数之前,先说一下日期格式,日期格式中有 7 个属性,分别是“Date”、“MonthNo”、“QuarterNo”、“年”、“日”、“月份”。在讲 DAX 时间函数之前,请大家先保存以下下面的代码,这是用来生成一个日期表的,非常实用,对着代码讲学得更快。CALENDAR 生成了一个列表,从 到,其中每个标量都是都是日期格式的。, 类型都是 DATE 日期类型,它是由 DATE 函数生成的。这 7 个属性是什么,可以简单从下表看出来。

2024-04-03 15:34:04 1863

原创 混沌学院-亚朵酒店案例-观后随心谈

那些可以落在纸面上的,不可以落在纸面上的;哪些融合了心理学、厚黑学、管理学等诸多学科之大成者,大概,只有在密室中慢慢的传递给自家子侄,才妥当。

2023-09-26 15:52:19 1413

原创 logging 模块和 colorlog 模块

最近写的自动化工具需要日志,使用了 logging 模块和 colorlog 模块,塑造了颜色丰富的控制台输出,非常喜欢。

2022-09-27 11:58:37 962

原创 可视化模块 pyecharts

pyecharts 真的是数据可视化编程利器啊,简单上一波代码

2022-09-27 11:22:47 524

原创 数据结构 14-二叉树的概念与性质

目 录1. 二叉树的定义1.1 有序树和无序树之分1.2 二叉树的定义2. 二叉树的性质2.1 非空二叉树上叶节点数等于双分支节点数加 12.2 非空二叉树上第 i 层上至多有 个节点,这里应有 i≥ 1 2.3 高度为 h 的二叉树至多有 -1 个节点(h>1) 3. 特殊的二叉树3.1 满二叉树3.1.1 满二叉树定义3.1.2 满二叉树特点3.2 完全二叉树3.2.1 完全二叉树定义3.2.2 完全二叉树特点3.2.3 完全二叉树性质 前面说了很多树的性质,就是为了引出我们最常见的一种树---二叉

2022-06-10 13:29:11 431

Test Authoring and Execution Framework_ms

The Test Authoring and Execution Framework (TAEF) provides a consistent mechanism for developers and testers to write and run automation. The framework provides a single infrastructure that allows them to share tests across disciplines and teams.

2018-07-18

头马pathway操作介绍

2018年头马pathway全英文操作介绍,对于新老会员都有帮助,能够更好的参与进来。学无止境,头马能不断地敦促人提升自己。

2018-07-17

Window版权 批量授权、零售版和OEM的区别

简单的介绍了Window版权 批量授权、零售版和OEM的区别。对于刚刚接触Windows的同学有帮助

2018-07-17

bitstd.exe Burn In Test V9.1

PassMark’s BurnInTest is a software tool that allows all the major sub-systems of a computer to be simultaneously tested for reliability and stability. Having a stable system is essential for users and organizations that rely on computers in their daily operation, as the cost of hardware failures can be enormous. The consequences of failure can be fairly benign, such as your data becoming inaccessible while faulty components are replaced, or it can be fairly damaging, such as the loss or corruption of files. Even if you have good backups, you can still lose days of work returning the PC to its pre-failure state. In many cases the lost data can never be replaced and businesses can be brought to an extremely vulnerable state, with the loss of documentation, customer details and financial records.

2020-07-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除