DataWhale-数据挖掘学习-EDA

什么是EDA

EDA的全称是探索性数据分析(Exploratory Data Analysis),也就是在没有了解的情况下不受约束的分析已有数据,对数据的构成、分布及其特点有整体的了解。并在有了全局了解后使用工具试探性的分析当前数据中可能蕴含的关系。

数据分析的要点与流程

使用的工具包

  • 数据科学库 pandas、numpy、scipy;
  • 可视化库 matplotlib、seabon;

上述工具可以有效的加快数据处理的速度。
附上python的清华源,不然有的包下载太慢了qwq

数据读入与变量认识

数据以csv格式存储,pandas是一个很好用的处理包。

Train_data = pd.read_csv('./data/used_car_train_20200313.csv', sep=' ') 
Test_data = pd.read_csv('./data/used_car_testA_20200313.csv', sep=' ')
Train_data.head()
Train_data.tail()
Train_data.shape

上述1,2语句读入表格中的数据,head,tail分别展示读入数据的开头与结尾,shape可以反应数据的大小
通过head可以看到每列特征的名字,初步认识各个变量的含义和类型

统计量分析

Train_data.describe()
Train_data.info()

describe函数给出每列特征的中值,平均数,4分位数等统计特征,给人一个大体的了解,而info给出了给列特征的数据类型。

缺省值统计与数据修补

# nan可视化 
missing = Train_data.isnull().sum() 
missing = missing[missing > 0] 
missing.sort_values(inplace=True) 
missing.plot.bar()

通过isnull可以初步判断特征里缺省的值,并可视化出来。
对于缺省较少的特征可以选择填充,让程序自己优化,但如果缺省的值较多,则要人工处理这个问题。
这里推荐一个缺省值可视化的包missingno,它可以直观的将缺省的位置显示出来。

# 可视化看下缺省值 
msno.matrix(Train_data.sample(250))

在这里插入图片描述
需要注意的是有时缺省值不一定以nan的形式存在,也可能以999999,-等形式出现,比如这里查看data的info,可以发现了notRepairedDamage 为object类型,使用下列命令可以快速统计出现的值:

Train_data['notRepairedDamage'].value_counts()

0.0    111361
-       24324
1.0     14315
Name: notRepairedDamage, dtype: int64

发现这里’-‘的单元也为缺省单元。于是可以调用replace函数将其替换为nan以便统一处理。

预测值分布

在处理预测问题时,我们不仅要知道特征的分布情况,也要明确预测值的分布。sns可以很方便的对一维数据分布进行拟合

import scipy.stats as st 
y = Train_data['price'] 
plt.figure(1); plt.title('Johnson SU') 
sns.distplot(y, kde=False, fit=st.johnsonsu) 
plt.figure(2); plt.title('Normal') 
sns.distplot(y, kde=False, fit=st.norm) 
plt.figure(3); plt.title('Log Normal') 
sns.distplot(y, kde=False, fit=st.lognorm)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
同时偏度与峰度也是一个数据分布的重要指标

## 2) 查看skewness and kurtosis 
sns.distplot(Train_data['price']); 
print("Skewness: %f" % Train_data['price'].skew()) 
print("Kurtosis: %f" % Train_data['price'].kurt())

Skewness: 3.346487
Kurtosis: 18.995183

在这里插入图片描述

查看预测值的具体频数 
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick

数据相关性分析与可视化

特征一般分为数字特征与类型特征,一般可以

##数字特征 
numeric_features = Train_data.select_dtypes(include=[np.number]) 
numeric_features.columns 
# # 类型特征 
categorical_features = Train_data.select_dtypes(include=[np.object]) 
categorical_features.columns

但有时需要手工挑选出来。

对数字特征可以做相关性分析并将其可视化

price_numeric = Train_data[numeric_features] 
correlation = price_numeric.corr() 
print(correlation['price'].sort_values(ascending = False),'\n')
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

在这里插入图片描述
然后可以查看每个特征的偏度与峰度,并且将他们的分布情况可视化出来。

for col in numeric_features: 
    print('{:15}'.format(col),
          'Skewness: {:05.2f}'.format(Train_data[col].skew()) ,
          '   ' ,
          'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())
         )

f = pd.melt(Train_data, value_vars=numeric_features) 
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False) 
g = g.map(sns.distplot, "value")

同时使用sns包,可以将变量两两配对,画出散点图

sns.set() 
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14'] 
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde') 
plt.show()

在这里插入图片描述
最后使用单个变量先对预测值进行回归拟合

fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)

v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)

v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)

power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)

v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)

v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)

v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)

v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)

v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)

v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

在这里插入图片描述
这些处理都大致体现了各个特征对预测值的影响,对后续处理起来指导作用。

而对于类型特征,一般可以看每类的频数了解数据情况,现在pandas里将类型变量的类型修改为object,方便之后调用其他函数

for c in categorical_features:
    Train_data[c] = Train_data[c].astype('category')
    if Train_data[c].isnull().any():
        Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
        Train_data[c] = Train_data[c].fillna('MISSING')

def boxplot(x, y, **kwargs):
    sns.boxplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")

在这里插入图片描述
除此之外还有

  • 小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
    sns.violinplot(x=catg, y=target, data=Train_data)
    plt.show()
  • 柱形图可视化
def bar_plot(x, y, **kwargs):
    sns.barplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")

最后推荐一个python包pandas_profiling,它将之前的这些处理做了集合,可以自动生成一个数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data) 
pfr.to_file("./example.html")

经过这些运算后,我们对数据特征有了一个大体的认识,也就算完成了EDA部分的工作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值