DataWhale-数据挖掘学习-FeatureEngineering

什么是特征工程

  • 特征工程一方面是在EDA后对特征进一步处理分析,并根据已有特征结合先验知识构造可能对问题有帮助的特征。
  • 另一方面是在已有特征中选择,挑选出有代求问题关系紧密的特征,达到拟合的准确率与鲁棒性的均衡。

特征处理

异常值清洗

在EDA中我们已经完成了对数据缺少,类型异常的处理。但为了进一步提高拟合的准确性,还可以对数据outlayer的部分进行处理。

线框图去异常

线框图是处理离群数值的有效方法。

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)
        rule_up = (data_ser > val_up)
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n
train = outliers_proc(train, 'power', scale=3)

Delete number is: 963
Now column number is: 149037
Description of data less than the lower bound is:
count    0.0
mean     NaN
std      NaN
min      NaN
25%      NaN
50%      NaN
75%      NaN
max      NaN
Name: power, dtype: float64
Description of data larger than the upper bound is:
count      963.000000
mean       846.836968
std       1929.418081
min        376.000000
25%        400.000000
50%        436.000000
75%        514.000000
max      19312.000000
Name: power, dtype: float64

在这里插入图片描述

长尾分布截断

观察power的数据

data['power'].plot.hist()

在这里插入图片描述
有在很大范围内数据频率很小,这时可以直接截断,将超过阈值的部分修改为阈值。

数据分桶

数据分桶就是将数据按一定范围化为,使用范围代替具体的值。
进行数据分桶的原因有很多

  1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
  2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
  3. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化
bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()

数据归一化

对于一些有实际意义的特征,可以根据先验知识,结合数据的峰度与偏度处理

train['power'].plot.hist()

在这里插入图片描述
可以使用log变化然后做归一化,将其近似转化到标准正态分布

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1) 
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

在这里插入图片描述

类别特征OneEncoder

LR模型无法直接处理类别特征,可以使用OneEncoder的方式将类别转化为一组多维的01编码,供回归使用,这样做的好处有:

  1. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
  2. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType','city',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])

最终数据的维数为很高

print(data.shape)
data.columns

(199037, 377)
Index(['name', 'power', 'kilometer', 'seller', 'offerType', 'price', 'v_0',
       'v_1', 'v_2', 'v_3',
       ...
       'power_bin_20.0', 'power_bin_21.0', 'power_bin_22.0', 'power_bin_23.0',
       'power_bin_24.0', 'power_bin_25.0', 'power_bin_26.0', 'power_bin_27.0',
       'power_bin_28.0', 'power_bin_29.0'],
      dtype='object', length=377)

构造新的特征

一方面可以根据先验知识构造有意义的特征,比如我们知道二手车的价格一般和车的使用时间成反比,所以可以根据车辆购入日期和卖出日期构造特征车辆使用时间

# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days

# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()

15072

再者由邮编提取城市信息

# 从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])

还可以根据一类数据的统计特征量(平均值、最大最小值、方差等)构造新的特征。

# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
train_gb = train.groupby("brand")
all_info = {}
for kind, kind_data in train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

这里就根据车辆的城市分类,构造了每个城市的价格均值、中值等特征。

特征选择

最终我们得到了一个特征数据很大的数据

print(data.shape)
data.columns

(199037, 377)
Index(['name', 'power', 'kilometer', 'seller', 'offerType', 'price', 'v_0',
       'v_1', 'v_2', 'v_3',
       ...
       'power_bin_20.0', 'power_bin_21.0', 'power_bin_22.0', 'power_bin_23.0',
       'power_bin_24.0', 'power_bin_25.0', 'power_bin_26.0', 'power_bin_27.0',
       'power_bin_28.0', 'power_bin_29.0'],
      dtype='object', length=377)

在实际使用中这些数据里面可能存在相关性差,冗余等的特征,我们不会全部使用,这时就需要挑选出合适的特征。

过滤式

相关性分析是反映特征与预测值之间关系的一个表征量

# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

0.5728285196051496
-0.4082569701616764
0.058156610025581514
0.3834909576057687
0.259066833880992
0.38691042393409447
# 当然也可以直接看图
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 
                     'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

在这里插入图片描述
一般情况下我们优先选择绝对值的大特征,大于零表明正相关,小于零表面负相关,这两者都是我们想要的。

包裹式

这里可以使用库mlxtend来做测试,它的方法是不断贪心的将特征加入模型,是特征数目增加,直到指定的特征数。

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
           k_features=30,
           forward=True,
           floating=False,
           scoring = 'r2',
           cv = 0)
x = data[data['train']==1].drop(['price'], axis=1)
x = x.fillna(0)
y = data[data['train']==1]['price']
sfs.fit(x, y)
sfs.k_feature_names_ 

('kilometer',
 'v_0',
 'v_3',
 'v_7',
 'v_14',
 'used_time',
 'brand_price_std',
 'brand_price_average',
 'model_44.0',
 'model_104.0',
 'model_105.0',
 'model_113.0',
 'model_145.0',
 'model_167.0',
 'model_175.0',
 'model_218.0',
 'brand_16',
 'brand_24',
 'bodyType_6.0',
 'gearbox_1.0',
 'power_bin_4.0',
 'power_bin_6.0',
 'power_bin_10.0',
 'power_bin_18.0',
 'power_bin_20.0',
 'power_bin_23.0',
 'power_bin_24.0',
 'power_bin_25.0',
 'power_bin_26.0',
 'power_bin_27.0')
# 画出来,可以看到边际效益
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值