图像美化论文笔记: Deep Photo Enhancer:Unpaired Learning for Image Enhancement from Photographs with GANs

论文地址:Deep Photo Enhancer:Unpaired Learning for Image Enhancement from Photographs with GANs

来源: 2018 CVPR

在线demo:http://www.cmlab.csie.ntu.edu.tw/project/Deep-Photo-Enhancer/

GitHub:https://github.com/nothinglo/Deep-Photo-Enhancer  

任务:image enhancement 图像增强 

方法:将这一问题作为 image to image translation任务,使用改进的two-way GAN 实现unpaid训练集进行训练

创新:global U-Net  + A-WGAN

引言:

文章将图像增强作为了一种图像翻译来进行处理,使用GAN做图像翻译,就我而言印象深刻的可能就是17年的两篇文章:pix2pix 和 cycGAN 。一个是paired,一个是unpaired,并且文章中有很多有趣的应用。

基于这两篇文章,在图像增强上也出现了大量的采用GAN来进行成对和非成对数据的工作。

而这篇DPE是将GAN应用到图像增强上。大的方向也是不成对的数据集,进行训练,来解决成对数据集收集的困难这一问题。

数据:

Paired:

自构建数据集: 如果自己构建数据集对差的图片进行一张张ps处理是不现实的,可以采取【将大量好的图片使用传统图像处理方法不同程度变坏】的方式 

公开数据集: ① MIT-Adobe FiveK Dataset

                       ② DSLR Photo Enhancement Dataset

Unpaired:

不要求一一对应,是域与域的构建。对于差

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值