论文地址:Deep Photo Enhancer:Unpaired Learning for Image Enhancement from Photographs with GANs
来源: 2018 CVPR
在线demo:http://www.cmlab.csie.ntu.edu.tw/project/Deep-Photo-Enhancer/
GitHub:https://github.com/nothinglo/Deep-Photo-Enhancer
任务:image enhancement 图像增强
方法:将这一问题作为 image to image translation任务,使用改进的two-way GAN 实现unpaid训练集进行训练
创新:global U-Net + A-WGAN
引言:
文章将图像增强作为了一种图像翻译来进行处理,使用GAN做图像翻译,就我而言印象深刻的可能就是17年的两篇文章:pix2pix 和 cycGAN 。一个是paired,一个是unpaired,并且文章中有很多有趣的应用。
基于这两篇文章,在图像增强上也出现了大量的采用GAN来进行成对和非成对数据的工作。
而这篇DPE是将GAN应用到图像增强上。大的方向也是不成对的数据集,进行训练,来解决成对数据集收集的困难这一问题。
数据:
Paired:
自构建数据集: 如果自己构建数据集对差的图片进行一张张ps处理是不现实的,可以采取【将大量好的图片使用传统图像处理方法不同程度变坏】的方式
公开数据集: ① MIT-Adobe FiveK Dataset
② DSLR Photo Enhancement Dataset
Unpaired:
不要求一一对应,是域与域的构建。对于差