
YOLO系列实践
文章平均质量分 90
人工智能YOLO炼丹师、布道师,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富,可添加关注公众号:红尘灯塔,至少每日一更!欢迎订阅!会陆续对不同付费专栏做视频教学,敬请关注!!!
鱼弦
【gzh:红尘灯塔,CSDN(博客专家、内容合伙人、新星导师、全栈领域优质创作者)
,51CTO(Top红人+专家博主),华为云·云享专家...
】
展开
-
YOLOv8 改进:主干网络替换为 FasterNet
YOLO 是一种单阶段目标检测算法,能够在一张图片上同时预测多个物体的边界框和类别概率。其高效的处理能力使得它广泛应用于需要实时处理的场景中。FasterNet 是一种轻量级神经网络架构,专注于加速推理过程,减少计算资源消耗。通过优化卷积操作和网络结构,该模型在保持高精度的基础上,实现了更快的推理速度。原创 2025-05-26 07:00:00 · 558 阅读 · 0 评论 -
YOLOv8 改进:主干网络替换为 PP-HGNetV2
YOLOv8 通过将主干网络替换为 PP-HGNetV2,显著提升了目标检测的性能和效率。PP-HGNetV2 是一种轻量级卷积神经网络,通过优化计算复杂度和参数量,实现了更快的推理速度和更高的检测精度。其核心特性包括有效的特征提取模块、深层残差连接和灵活的架构设计,使其适用于多种实时应用场景,如无人驾驶、智能安防和工业自动化。本文提供了代码示例,展示了如何在不同场景中部署和测试改进后的 YOLOv8 模型,并解释了其核心原理和优势。原创 2025-05-15 09:12:59 · 605 阅读 · 0 评论 -
YOLO食品加工异物检测系统增强版(含帧率计算与视频处理)
这个增强版系统提供了完整的视频处理能力,包括帧率计算、实时显示和视频保存功能,可以直接应用于实际食品生产线上的异物检测场景。根据具体需求,可以进一步扩展报警功能、与PLC集成或添加数据库记录等企业级功能。:将视频捕获、处理和显示放在不同线程中。:积累多帧后一次性推理提高GPU利用率。:使用TensorRT优化模型。原创 2025-05-05 12:00:00 · 823 阅读 · 0 评论 -
【matlab】基于 A* 算法的最优路径搜索算法仿真
A* 算法是一种广泛应用于路径规划和图搜索的启发式搜索算法。它通过结合启发式函数和实际代价函数,能够高效地找到从起点到终点的最优路径。A* 算法广泛应用于机器人导航、游戏 AI、交通规划等领域。A* 算法通过结合启发式函数和实际代价函数,能够高效地找到从起点到终点的最优路径。MATLAB 仿真展示了 A* 算法的基本流程和路径规划性能,适用于机器人导航、游戏 AI、交通规划和物流配送等多种应用场景。原创 2025-04-17 18:00:00 · 638 阅读 · 1 评论 -
YOLOv8 改进:用 SimSPPF、SPP-CSPC 和 SPPF-CSPC 替换 SPPF 结构
YOLO 是一种单阶段目标检测架构,能够在一张图片上同时预测多个物体的边界框和类别概率。由于其高速度和精准度,广泛应用于需要实时处理的场景中。原创 2025-04-16 13:30:00 · 613 阅读 · 0 评论 -
YOLOv8 改进:添加 DiverseBranchBlock 并引入 C2f 结构
YOLO是一种实时目标检测算法,能够在单次计算中输出多个对象的识别和定位。以其高效性和准确性,广泛应用于各种需要实时监控和处理的场景中。nn.ReLU(),nn.ReLU(),return xnn.ReLU(),nn.ReLU(),return x通过将 DiverseBranchBlock 与 YOLOv8 的 C2f 结构结合,我们显著提升了目标检测的性能。这一改进不仅提高了模型的精度,还为复杂环境下的实时应用提供了有效解决方案。原创 2025-04-15 09:20:46 · 551 阅读 · 0 评论 -
YOLOv8 改进:添加 MHSA 注意力机制并与 C2f 结构融合
YOLO(You Only Look Once)是一个实时目标检测算法,它能在单次推理过程中预测多个边界框和类别概率。YOLO 系列以其高速和高准确性而著称。return outnn.ReLU(),return xreturn outnn.ReLU(),return x通过将 MHSA 注意力机制与 YOLOv8 中的 C2f 结构相结合,我们显著提升了目标检测的性能。这一改进不仅提高了模型的精度,还为复杂环境下的实时应用提供了有效解决方案。原创 2025-04-14 09:13:17 · 869 阅读 · 0 评论 -
YOLOv8 改进:主干网络替换为 MobileNetV4
YOLO 是一种单阶段目标检测算法,可在图像中同时预测多个边界框和类别概率。其结构简单且高效,特别适用于需要快速响应的场合,如视频流处理。MobileNetV4 是 MobileNet 系列最新的演进版本,着眼于提高模型效率和运行速度。它结合了改进的卷积层和注意力机制,提供了更高的精度和效率。将 YOLOv8 的主干网络替换为 MobileNetV4 是一种有效的方法,能在保持检测精度的同时显著减少计算开销。这种方法非常适合移动设备和其他资源受限的环境,并为进一步的研究和实际应用提供了广阔的前景。原创 2025-04-12 09:21:34 · 943 阅读 · 0 评论 -
YOLOv8 改进系列:引入 Retinexformer 主干网络用于低光照物体检测
Retinex 理论旨在模拟人类视觉系统如何感知颜色和亮度,即使在不均匀光照下,也能维持对物体色彩和纹理的恒定感知。这一理论广泛用于图像增强,尤其是在处理低光照图像时。# 初始化 Transformer 配置,调优参数以适应图像增强# 假设输入已被处理为适合 Transformer 的形状# 在实际应用中,需要将图像转化为适合 Transformer 的输入格式nn.Conv2d(768, 512, kernel_size=1), # 根据 Transformer 输出调整通道数。原创 2025-04-10 09:20:44 · 786 阅读 · 0 评论 -
YOLOv8 改进:YOLOv8 替换主干网络为 EfficientNet
YOLO 是一种广泛使用的实时目标检测算法,能够在单个神经网络的推理过程中预测多个边界框和类别概率。其高效率使得它适用于各种需要实时处理的应用。EfficientNet 是谷歌提出的一种卷积神经网络架构,通过复合缩放法(Compound Scaling Method)在参数数量、计算量与准确性方面取得了良好的平衡。它通过优化模型深度、宽度和分辨率,以实现最优性能。将 YOLOv8 的主干网络替换为 EfficientNet 是一个有效的改进方向,可以在保持精度的同时减少计算开销。原创 2025-04-11 09:07:58 · 889 阅读 · 0 评论 -
YOLOv8 改进:主干网络替换为 ShuffleNetV2
YOLO 是一种单阶段目标检测算法,可以在一张图片上同时预测多个边界框和类别概率。由于其优秀的实时性,在自动驾驶、监控等需要实时处理的场景中应用广泛。ShuffleNetV2 是一种轻量级神经网络架构,专为移动和嵌入式设备设计。通过参数效率和 FLOPs(浮点运算次数)的平衡,实现高效的卷积操作和特征表达能力。将 YOLOv8 的主干网络替换为 ShuffleNetV2 是一个有趣而富有潜力的改进方向,通过这种方式可以有效地减少资源消耗,同时保持相对较高的检测性能。原创 2025-04-09 09:10:50 · 733 阅读 · 0 评论 -
YOLOv8 改进:添加 Global Context 注意力机制与 C2f 结构融合
YOLOv8 作为 YOLO 系列的演进版本,在速度和准确率上都有显著提高。它利用深度学习技术进行实时物体检测,被广泛应用于多个领域。通过在 YOLOv8 中引入 Global Context 注意力机制与 C2f 结构,我们有效地提升了模型在复杂场景下的检测表现。这种改进在不增加过多计算成本的情况下,显著增强了模型的适应性和精准度,为多样化应用提供了坚实基础。掌握这些先进技术,可以帮助我们应对更多实际挑战。原创 2025-04-08 09:16:26 · 722 阅读 · 0 评论 -
YOLOv8 改进:添加 NAM 注意力机制,融合 C2f 结构
YOLOv8 是目标检测领域的最新一代 YOLO 模型,具备了更高的速度和精度,适用于实时应用场景。它通过改进网络架构和优化策略进一步提高了检测效果。通过在 YOLOv8 中集成 NAM 注意力机制和 C2f 结构,我们能够显著提升其对复杂场景的检测能力。这种改进不仅在精度方面表现出色,同时也兼顾了计算效率,为多种应用提供了更强的支持。在不断变化的技术环境中,掌握这些先进技术可以为解决更多实际问题铺平道路。原创 2025-04-07 09:10:27 · 600 阅读 · 0 评论 -
YOLOv8 改进:添加 Triplet 注意力机制与 C2f 结构融合
YOLOv8 是 YOLO 系列最新版本,以更快的速度和更高的精度著称。在目标检测任务中,它采用深层卷积神经网络来识别图像中的物体。通过在 YOLOv8 中集成 Triplet 注意力机制和 C2f 结构,我们能够显著提升其对复杂场景的检测能力。这不仅提高了模型的精度,还拓宽了其在各种实际应用中的适用性。结合这些先进的技术,未来的目标检测系统将在多个领域发挥越来越重要的作用。原创 2025-04-06 23:03:12 · 473 阅读 · 0 评论 -
YOLO 公共卫生间清洁度评估
YOLO 是一种单阶段目标检测算法,能够在一张图片上同时预测多个物体的边界框以及类别概率。由于其高速度和精确性,广泛应用于需要实时处理的场景中,例如监控和自动驾驶。通过使用改进的 YOLO 模型评估公共卫生间的清洁度,可以显著提升公共设施的管理水平。这不仅能提高用户体验,还能有效节约人力成本。在不断完善和发展的过程中,该解决方案将变得更加智能和全面。原创 2025-04-05 08:00:00 · 1144 阅读 · 0 评论 -
YOLOv8 改进:添加 DCNv4 可变性卷积(Windows 系统成功编译)
通过在 YOLOv8 中集成 DCNv4 可变性卷积,可以显著提升模型在不规则和小目标检测任务中的表现。这种改进不仅提高了检测精度,还拓展了 YOLOv8 的应用场景,为开发者提供了更加灵活和强大的工具。原创 2025-04-03 09:09:42 · 682 阅读 · 0 评论 -
YOLOv8 改进:将 SPPF 替换为 FocalModulation
YOLO(You Only Look Once)是一种单阶段目标检测架构,能够在一张图片上同时预测多个物体的边界框和类别概率。它以高速度和合理的准确性广泛应用于实时场景。Focal Modulation 是一种新的特征处理机制,可通过聚焦于关键区域进行特征调制,增强模型对重要细节的关注。这种方式更具灵活性,能在降低计算负担的同时提高检测精度。原创 2025-04-04 08:00:00 · 582 阅读 · 0 评论 -
YOLOv8 改进:集成 BiFormer 注意力机制提升小目标检测能力
通过将 BiFormer 注意力机制集成到 YOLOv8 中,可以有效提升模型在复杂场景下的特征提取能力,特别是在小目标检测任务中表现出色。这种机制不仅保持了模型的轻量化特性,也增强了对重要特征的捕获效果。这为各种实际应用提供了坚实的技术基础和更广阔的实践空间。原创 2025-04-02 09:39:18 · 626 阅读 · 0 评论 -
YOLOv8 改进:添加 iRMB 注意力机制(反向残差注意力)
通过将 iRMB 注意力机制集成到 YOLOv8 中,可以大幅提升模型在复杂场景下的特征提取能力。这种机制不仅保持了模型的轻量化特性,也增强了对重要特征的捕获效果。原创 2025-04-01 09:11:23 · 667 阅读 · 0 评论 -
YOLO实时动作纠正系统:体育运动训练的革命性解决方案
fill:#333;color:#333;fill:none;专业运动员标准动作多相机同步定制方案边缘部署迁移学习首批试点基础建设基础建设多相机同步硬件架设硬件架设专业运动员标准动作数据采集数据采集模型优化模型优化迁移学习领域适应领域适应边缘部署实时性测试实时性测试商业落地商业落地首批试点高尔夫学院高尔夫学院定制方案篮球青训篮球青训系统部署阶段。原创 2025-03-31 09:12:07 · 767 阅读 · 0 评论 -
YOLOv8 改进:添加 EMA 注意力机制,并与 C2f 融合
通过结合 EMA 注意力机制和 C2f 提升 YOLOv8 的特征提取能力,能够有效减少模型复杂度并增强检测性能。这种方法不仅适用于资源受限的设备,还能在丰富多样的实际应用中提供强劲支持。原创 2025-03-30 12:00:00 · 851 阅读 · 0 评论 -
YOLOv8 改进:添加 MLCA 注意力机制(混合局部信道注意)
通过将 MLCA 注意力机制集成到 YOLOv8 中,可以有效提升模型在复杂场景下的特征提取能力。这种机制不仅保持了模型的轻量化特性,也增强了对重要特征的捕获效果。这为各种实际应用提供了坚实的技术基础和更广阔的实践空间。原创 2025-03-29 12:00:00 · 599 阅读 · 0 评论 -
YOLOv8 改进:主干网络改进融合 MobileNetV3 + CA 注意机制
通过结合 MobileNetV3 和 CA 提升 YOLOv8 的特征提取能力,能够有效减少模型复杂度并增强检测性能。这种方法不仅适用于资源受限的设备,还能在丰富多样的实际应用中提供强劲支持。原创 2025-03-28 09:27:08 · 634 阅读 · 0 评论 -
YOLO 建筑物表面裂缝检测
YOLO在建筑物表面裂缝检测中的应用展示了其在实时处理中的强大能力。这种技术不仅提高了建筑物检测和维护的效率,还为结构工程师提供了更加可靠准确的决策支持。原创 2025-03-27 09:13:17 · 1340 阅读 · 0 评论 -
YOLOv8 改进:替换主干网络为 MobileNetV2(轻量化架构)
通过使用 MobileNetV2 作为 YOLOv8 的特征提取器,可以显著降低模型复杂度和运行时资源消耗,同时在一定程度上保持检测精度。这种方法特别适合需要高效计算的边缘设备和嵌入式系统。原创 2025-03-26 09:21:37 · 654 阅读 · 0 评论 -
YOLOv8 改进:添加 ParNetAttention 注意力机制与 C2f 融合
通过结合 ParNetAttention 和 C2f 提升 YOLOv8 的特征提取能力,能够有效减少模型复杂度并增强检测性能。这种方法不仅适用于资源受限的设备,还能在丰富多样的实际应用中提供强劲支持。原创 2025-03-25 09:21:33 · 882 阅读 · 0 评论 -
YOLOv8 改进:添加 AKConv(任意采样形状和任意数目参数的卷积)
通过将 AKConv 卷积集成到 YOLOv8 中,可以提高模型在复杂场景下的鲁棒性和敏捷性。该方法不仅增强了细节捕捉能力,还保持了较高的运行效率,适合于多种实际应用需求。原创 2025-03-24 09:11:27 · 747 阅读 · 0 评论 -
YOLOv8 改进:添加 AKConv(任意采样形状和任意数目参数的卷积)
通过将 AKConv 卷积集成到 YOLOv8 中,可以提高模型在复杂场景下的鲁棒性和敏捷性。该方法不仅增强了细节捕捉能力,还保持了较高的运行效率,适合于多种实际应用需求。原创 2025-03-23 08:00:00 · 593 阅读 · 0 评论 -
YOLOv8 改进:使用 MobileNetV3 轻量化架构改进特征提取网络
通过使用 MobileNetV3 作为 YOLOv8 的特征提取器,能够显著降低模型复杂度和运行时资源消耗,同时在一定程度上保持检测精度。这种方法特别适合需要高效计算的边缘设备和嵌入式系统。原创 2025-03-22 08:00:00 · 710 阅读 · 0 评论 -
YOLOv8 改进:添加 CGAttention 注意力机制(级联群体注意力机制)
通过将 CGAttention 注意力机制集成到 YOLOv8 中,模型能够更精准地聚焦于关键特征区域,进一步提升目标检测的精度和鲁棒性。这种方法在高效性和准确性之间找到了良好的平衡点。原创 2025-03-21 09:16:30 · 992 阅读 · 0 评论 -
YOLOv8 改进:添加 DAttention 注意力机制
通过将 DAttention 注意力机制集成到 YOLOv8 中,模型能够更精准地聚焦于关键特征区域,提高在复杂场景中小目标的检测性能。同时,该方法保持了较低的计算开销,确保了实时性。原创 2025-03-20 09:11:07 · 573 阅读 · 0 评论 -
YOLOv8 改进: 添加 CA 注意力机制 + 新增小目标检测头
通过结合 CA 注意力机制和新增的小目标检测头,YOLOv8 能够更有效地关注细节丰富的区域和小目标,在多样化环境中表现出色。这些改进使得模型更适用于实际应用中复杂场景的需求。原创 2025-03-19 08:00:00 · 888 阅读 · 0 评论 -
YOLOv8 改进:添加 ECA 注意力机制
通过将 ECA 注意力机制集成到 YOLOv8 中,能够有效提升模型对关键特征的关注,提高目标检测的精度。同时,ECA 的轻量化特性确保了模型推理速度的优越性。原创 2025-03-18 09:18:41 · 885 阅读 · 0 评论 -
YOLOv8 改进:添加 GAM 注意力机制
通过将 GAM 注意力机制集成到 YOLOv8 中,可以增强模型对关键特征的关注,提高在复杂场景中的目标检测效果。虽然这可能会略微增加计算开销,但通常能在精度上带来显著提升。原创 2025-03-17 13:45:00 · 1373 阅读 · 0 评论 -
YOLOv8 改进:添加 CA 注意力机制
通过集成 CA 注意力机制,YOLOv8 可以更有效地聚焦于关键特征,从而在丰富多样的环境中提升检测性能。其轻量级和有效性使得 CA 成为改进卷积神经网络的理想选择。原创 2025-03-16 08:00:00 · 678 阅读 · 0 评论 -
YOLOv8 改进:添加 CBAM 注意力机制
通过在 YOLOv8 中集成 CBAM,模型可以更有效地聚焦于关键特征区域,从而提升检测性能,特别是在复杂背景和小目标情况下。虽然增加了一些计算成本,但通常是值得的性能权衡。原创 2025-03-15 08:00:00 · 1286 阅读 · 0 评论 -
YOLOv8 改进:添加 LSK 注意力机制
通过添加 LSK 注意力机制,YOLOv8 能够更有效地捕捉特征图上的重要信息,提高检测性能,尤其是在复杂场景下展现出色的表现。这种方法不仅适用于资源受限的设备,还能在丰富多样的实际应用中提供强劲支持。原创 2025-03-13 09:10:26 · 723 阅读 · 0 评论 -
YOLOv8 添加可变形卷积 DCNv2
通过将 DCNv2 集成到 YOLOv8 中,可以有效增强模型在处理复杂形变目标时的鲁棒性。然而,这也可能导致计算开销增加,因此需平衡精度与效率。原创 2025-03-12 09:10:38 · 1206 阅读 · 0 评论 -
YOLOv12改进:引入无参数平均注意力PfAAM模块
YOLOv12 是目标检测领域的最新进展之一,以其高效和准确著称。为了进一步提升其性能,我们可以引入无参数平均注意力模块 (Parameter-free Average Attention Module, PfAAM)。该模块无需额外参数,即可增强模型对重要特征的关注,从而提升检测精度。通过在 YOLOv12 中引入 PfAAM 模块,我们可以进一步提升模型的检测精度,尤其是在复杂背景和小目标检测方面。该模块无需额外参数,计算量小,适合实时应用。原创 2025-03-06 09:13:06 · 967 阅读 · 0 评论 -
YOLO 工程机械运行状态监测
YOLO(You Only Look Once)是一种实时目标检测算法,它通过快速和准确的识别能力,能够在工程机械运行状态监测中发挥重要作用。利用YOLO模型,可以自动监测工程机械的运行状态,包括工地上重型设备的工作状态、运行效率和安全性等。通过YOLO在工程机械运行状态监测中的应用,可以有效提高对施工现场设备的管理和维护效率,加强安全监管。此系统帮助及时发现设备异常,优化作业流程。原创 2025-03-07 08:00:00 · 1040 阅读 · 0 评论