部署CosyVoice声音克隆模型一定要用conda,不然会出错


前言

部署人工智能开源模型的过程中,一定会遇到各种坑。这个系列我想针对conda做个总结,名字就叫“一定要用conda,不然会出错”。


一、部署方法

git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
cd CosyVoice
git submodule update --init --recursive

conda create -n cosyvoice python=3.8
conda activate cosyvoice
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host
### 安装 Miniconda 为了在树莓派3B上顺利部署YOLOv5模型,建议先安装Miniconda来管理Python环境及相关依赖库。具体操作如下: 对于树莓派3B这类ARM架构设备,需下载适合该硬件平台的Miniconda版本。访问Miniconda官方网站或GitHub页面寻找适用于ARM v7架构(armhf)的操作系统镜像文件并下载。 通过命令行工具wget可以直接获取安装脚本: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-armv7l.sh ``` 赋予执行权限后启动安装过程: ```bash chmod +x Miniconda3-latest-Linux-armv7l.sh ./Miniconda3-latest-Linux-armv7l.sh ``` 遵循提示完成配置,通常推荐接受默认设置以便于后续管理和使用[^1]。 ### 创建虚拟环境与安装必要组件 创建专门用于YOLOv5项目的Conda环境,并激活此环境: ```bash conda create --name yolov5_env python=3.9 -y conda activate yolov5_env ``` 随后依据项目需求安装必要的Python包和其他软件开发套件(SDK),这一步骤可以参照已有的经验分享[^3]: ```bash pip install numpy opencv-python matplotlib torch torchvision torchaudio sudo apt-get update && sudo apt-get install cmake libopenblas-dev m4 libblas-dev ``` ### 部署 YOLOv5 模型 将预先训练好的`best.pt`或其他自定义权重文件复制到目标位置,在终端中进入YOLOv5源码目录之后加载这些预训练参数即可实现模型迁移至边缘计算节点如树莓派3B上的目的。 确保已经克隆了官方仓库或者上传了自己的修改版代码副本到本地机器后再继续下一步动作。如果打算利用GPU加速推理速度,则还需要额外考虑驱动程序兼容性和CUDA Toolkit的支持情况;但对于大多数情况下只配备CPU资源的Raspberry Pi来说并非必需项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值