HashMapStudy

import java.util.Collection;
import java.util.HashMap;

/**
 * Create by tate ON 2017/11/11.
 */
public class HashMapStudy {
    public static void main(String[] args) {
//        HashMap<String,Object> m=new HashMap<String,Object>();
//        m.put("a", "rrr1");
//        m.put("a", "rrr2");
//        m.put("a", "rrr3");
//        m.put("a", "rrr4");


//        m.put("b", "tt9");
//        m.put("c", "tt8");
//        m.put("d", "g7");
//        m.put("e", "d6");
//        m.put("f", "d4");
//        m.put("g", "d4");
//        m.put("h", "d3");
//        m.put("i", "d2");
//        m.put("j", "d1");
//        m.put("k", "1");
//        m.put("o", "2");
//        m.put("p", "3");
//        m.put("q", "4");
//        m.put("r", "5");
//        m.put("s", "6");
//        m.put("t", "7");
//        m.put("u", "8");
//        m.put("v", "9");
        //System.out.println(m.size());
        //System.out.println(m.get("a"));


        HashMap<String,Object> hashMap = new HashMap<String,Object>(3);
        hashMap.put("inital",3);
        hashMap.put("inita",5);
        System.out.println(hashMap.get("inital").toString());
        System.out.println(hashMap.entrySet());

        System.out.println(hashMap.size());
        System.out.println(hashMap.entrySet());
        System.out.println(hashMap.keySet());
        System.out.println(hashMap.values());
        //1.8独有
        hashMap.forEach((k,v)-> {
            if("inital".equals(k)){
                System.out.println(v);
            }}
        );

        // 基于hash表实现的,内部通过单链表解决冲突,容量不足会自动增长
        // 非线程安全的,只用于单线程环境下,再多线程的环境下,
        // 可以使用concurrent并发包下面的       concurrentHashMap:通过把整个Map分为N个Segment(类似HashTable),可以提供相同的线程安全,但是效率提升N倍,默认提升16倍。
        // 初始容量是16,实际的容量必须是2的倍数
        // 加载因子075   计算阀值时候:容量*加载因子
        // 最大容量也是2的倍数 2^30次方,容量大于这个的时候会被这个覆盖,所以再大也就这么大了
        // entry是单向链表 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
        // key和value 允许为null
        // 首先,如果key为null,则直接从哈希表的第一个位置table[0]对应的链表上查找。记住,
        //      key为null的键值对永远都放在以table[0]为头结点的链表中,
        //      当然不一定是存放在头结点table[0]中。
        // 扩容:调用了resize的方法,其实是新建了一个hashmap的数组,调用transfer的方法,
        // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,这种方式,非常的浪费耗时的
        // ,所以在使用的时候,最好能够预先估计好hashmap中元素的个数,有助于提高其性能

        //核心在于计算hash值和索引值的方法
        //   hash用的位的操作使hash值的计算效率很高
        //   return h & (length-1);  一般是hash值对length取模运算:除法散列,
        //      使得元素在哈希表中散列的比较的均匀,但是对用到除法,效率很低,但是这样的算法
        //      保证了效率夜保证了均匀,这是比较厉害的地方了,同时有一个地方,容量为什么是2的倍数,这样
        //      首先,length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,
        //      同时也提升了效率;其次,length为2的整数次幂的话,为偶数,
        //      这样length-1为奇数,奇数的最后一位是1,
        //      这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),
        //      即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,
        //      而如果length为奇数的话,很明显length-1为偶数,
        //      它的最后一位是0,这样h&(length-1)的最后一位肯定为0,
        //      即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,
        //      这便浪费了近一半的空间,因此,length取2的整数次幂,
        //      是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。

        System.out.println(10 & 11);


//        // hashmap entrySet() 遍历    优先考虑 性能上entrySet()会优于keySet()   entrySet的key value都拿出来了,
//          keySet和名字一样,只拿了key,到时候要value的时候又要去拿一次,这样比较耗费资源。
//          当然,好处是,如果只要key的话,这样能减少资源的消耗,要的时候再拿
//        for(Map.Entry<Object,Object> m: hash.entrySet()){
//            System.out.println(m.getKey()+"---"+m.getValue());
//        }
//        //hashmap keySet() 遍历
//        for(Object m: hash.keySet()){
//            System.out.println(m+"---"+hash.get(m));
//        }
//        // treemap keySet()遍历
//        for(Object m: treeMap.keySet()){
//            System.out.println(m+"---"+treeMap.get(m));
//        }

        //遍历value 用values




    }
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值