Residual Networks Behave Like Ensembles of Relatively Shallow Networks

Abstract

本文是NIPS2016的文章,作者来自Cornell大学.
本文主要是对residual networks进行解释。首先,使用解构的思想吧ResNet等价于一组不同长度的路径的集合;然后采用了lesion study的方式揭示了不同路径之间并没有强依赖,尽管它们是联合学习的;最后,通过实验验证了大多数路径是短的,主要是短路径在学习,长路径不贡献梯度.最终得出一个结论,ResNet 110层大多数梯度是来自10-34层深的路径,这样的话,ResNet并没有通过全局信息流动来解决梯度消散问题.

Introduction

ResNet和之前工作的主要不同在于(1)恒等的跳跃结构和传统的序列结构不同(2)比传统的网络深两个数量级(3)在测试时移除ResNet的几层并不会太多降低精度.

Others

没太多可说的,具体实验看论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值