温馨提示:
- 在本文中,entry、节点、映射的含义,几乎是等同的,不要因为一会说entry、一会说节点就蒙圈
3. 查找方法
3.1 get方法
- 回忆之前学习TreeMap时,
get()
方法的实现:通过getEntry()
获取到key对应的entry,然后再返回entry中的value
HashMap中的 get() 方法也是照葫芦画瓢:
-
返回的值为
null
,可能是map中不存在key的映射,也可能是映射的值本身就是null
-
要想判断map中是否存在key的映射,还是需要调用
containsKey()
方法public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }
核心方法:getNode()
- 猜测,getNode()方法需要分情况查找节点(即entry):① 桶中的节点以链表的形式组织;② 桶中的节点以红黑树的形式组织
- 不同的结构,将使用不同的遍历逻辑
final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; // 计算桶下标,对应桶中存在节点 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 先检查头节点 if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 根据头节点下面连接的是红黑树 or 链表,分情况遍历 if ((e = first.next) != null) { if (first instanceof TreeNode) // 基于红黑树的查找 return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 基于链表的顺序查找 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
3.2 containsKey方法
-
学习了get()方法, 接着要学习的肯定是containsKey()方法
-
思路与TreeMap一致:先获取节点,然后判断节点是否存在,从而判断map中是否包含key
-
或者说,判断map中是否存在key的映射
public boolean containsKey(Object key) { return getNode(hash(key), key) != null; }
3.3 containsValue方法
- TreeMap中也有containsValue() 方法,只是自己的使用的不多,被忽略了而已 😂
- HashMap的 containsValue() 方法代码如下:
public boolean containsValue(Object value) { Node<K,V>[] tab; V v; if ((tab = table) != null && size > 0) { // 以链表的形式遍历每个桶 for (int i = 0; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null; e = e.next) { if ((v = e.value) == value || (value != null && value.equals(v))) return true; } } } return false; }
疑问: 桶中可能是红黑树,怎么还以链表的形式遍历呢?
- HashMap学习(一)中,提到HashMap的TreeNode实际继承了自身的Node,通过next和prev指针,在树化后仍然保留了原链表的节点顺序
- 因此,这也是为何以链表的形式遍历桶中的节点,而没有考虑红黑树或链表两种情况的原因
3.4 getOrDefault方法
- 爱刷题的同学就会发现,经常使用HashMap的
getOrDefault()
方法,在key不存在时返回一个默认值的情况。 - 尤其是,使用HashMap实现计数的时候
- getOrDefault() 方法是Map接口,在JDK1.8时新增的方法
- getOrDefault() 方法的代码如下:
(1)不存在key的映射,则返回默认值defaultValue;
(2)否则,返回映射的valuepublic V getOrDefault(Object key, V defaultValue) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; }
4. put方法
4.1 put()方法概述
- 使用过HashMap的同学,应该都知道通过
put()
方法可以添加key-value- 存在key的映射,则更新原始的value;
- 不存在key的映射,则新增entry,存储key-value
- 冷门:
put()
方法是有返回值的,返回值为oldValue或null
put()
方法的代码如下,十分简单,重头戏在putVal()
方法- 粗略一看呢,putVal() 方法的入参包括:key的哈希值、key、value以及两个未知的boolean入参
- putVal() 方法存在返回值,返回值就是oldValue或
null
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }
4.2 putVal()方法
putVal()
方法的代码如下- onlyIfAbsent参数为true,表示存在key的映射时,不更新oldValue
- evict参数为false,表示哈希表处于创建状态(creation mode)
- 哈希表为空(第一次插入entry),通过扩容实现初始化
- 哈希表不为空,对应的桶为空,直接插入entry
- 哈希表不为空,对应的桶也不为空,向桶中更新或插入entry
- 若存在key的映射,需要更新并返回oldValue;否则,
modCount++
、size++
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 哈希表为空,通过扩容实现初始化 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 对应的桶为空,直接以链表节点的形式插入 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 首节点匹配上,直接记录首节点 e = p; else if (p instanceof TreeNode) // 桶中为红黑树,实现向红黑树中新增节点 // 若不存在key的映射,返回null e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { // 桶中未链表,进行链表的遍历与插入 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { // e指向链表末尾,直接插入节点 p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st,binCount >=7,实际是链表长度 > 8,此时将链表转为红黑树 treeifyBin(tab, hash); break; } // 存在key映射,直接退出 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; // 更新p,指向下一个节点 } } if (e != null) { // 存在key的映射,更新并返回oldValue V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) // onlyIfAbsent为false或oldValue为null,则更新oldValue e.value = value; afterNodeAccess(e); // 空实现,在LinkedHashMap中需要实现 return oldValue; // 返回oldValue } } // 结构发生改变 ++modCount; if (++size > threshold) // entry数大于threshold,需要扩容 resize(); afterNodeInsertion(evict); // 空实现 return null; // 不存在key的映射,返回null }
链表转红黑树的条件:链表长度 > 8;链表节点的插入,JDK 1.8采用尾插法
- 这里的判断实际上让人很迷,看着是
binCount >= 7
,按照数组中index的对应关系,也就是长度 >= 8。 - 然而,它是先插入节点后再做的判断,导致链表的长度+1,最终是长度 >= 9,即长度 > 8
- 注释
-1 for 1st
,是有深意的,表明第一个节点的 index 为 -1,并非0 - 附上一个辛辛苦苦画的推导图:假设待插入节点为9,基于链表的插入过程如下:
4.3 treeifyBin()方法
treeifyBin()
方法的方法说明如下,大意是:将链表转为红黑树,若哈希表比较小,会扩容而非树化Replaces all linked nodes in bin at index for given hash unless table is too small, in which case resizes instead.
- 一下就蒙圈了:链表长度大于8,不就应该将链表转为红黑树了吗?怎么还需要考虑哈希表的大小呢?
- 还是先来看看代码:
- 从代码来看,当哈希表为空或长度小于
MIN_TREEIFY_CAPACITY
(64)时,直接进行扩容操作; - 当哈希表容量 >= 64时,会将对应桶中的链表转为红黑树
- 链表转红黑树:(1)链表节点转树节点,通过prev和next保留链表的节点顺序;(2)使用
treeify()
方法将树节点组织为红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; // 哈希表为空,或小于最小树化容量,则进行扩容操作 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); else if ((e = tab[index = (n - 1) & hash]) != null) { // 计算index,定位到对应的桶 TreeNode<K,V> hd = null, tl = null; // 将链表节点转为树节点,通过prev和next保留原链表的节点顺序 do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); // 将树节点组织为红黑树 if ((tab[index] = hd) != null) hd.treeify(tab); } }
- 从代码来看,当哈希表为空或长度小于
- 总结: 链表长度大于8,不一定会转为红黑树,可能会因为扩容被shorten
为什么要超过最小树化容量,才将链表转为红黑树?
- 链表长度大于8的原因:
- 哈希值散列不均,具有相同哈希值的key很多,从而计算出的桶下标一致,导致链表长度大于8
- 哈希值散列均匀,但哈希表的容量较小,具有不同哈希值的key将对应相同的桶下标,导致链表长度大于8
- 针对原因二,通过扩容哈希表就可以解决
- 同时,依然能提供 O ( 1 ) O(1) O(1)的时间复杂度,而非树化后的 O ( l o g 2 N ) O(log_2N) O(log2N)的时间复杂度
参考链接:
- jdk1.8的hashmap真的是大于8就转换成红黑树,小于6就变成链表吗
- Why HashMap resize when it hits TREEIFY_THRESHOLD value which is not required?
4.4 扩容方法 —— resize()
-
resize() 方法的注释如下
- 初始化哈希表,或将哈希表的容量翻倍
- 如果哈希表为空,initialCapacity存储在threshold中,对应的构造方法为
public HashMap(int initialCapacity, float loadFactor)
或public HashMap(int initialCapacity)
- 容量翻倍:保证哈希表的容量为2的幂;
- 扩容后,桶中的节点(链表节点或红黑树节点)要么保持原位不动,要么移动至新表中offset为2的幂的位置(
后续代码中有所体现
)
Initializes or doubles table size. If null, allocates in accord with initial capacity target held in field threshold. Otherwise, because we are using power-of-two expansion, the elements from each bin must either stay at same index, or move with a power of two offset in the new table.
-
resize() 方法的代码如下:
- 先计算扩容后的哈希表容量和threshold:
(1)哈希表不为空,要么将哈希表的容量和threshold都扩容两倍,要么不再扩容(threshold设为Integer.MAX_VALUE
,直接返回oldTable)
(2)哈希表为空,oldThr(即当前的 threshold )大于0,使用oldThr更新newCap;对应构造函数:public HashMap(int initialCapacity, float loadFactor)
或public HashMap(int initialCapacity)
(3)哈希表为空,oldThr为0,说明未初始化threshold,直接使用默认值更新newCap和newThr;对应构造函数
(4)使用newThr更新threshold - oldTable为空,直接返回创建好的newTable
- oldTable不为空,需要遍历桶中的entry,将这些entry放置到正确的位置(桶下表可能不变,可能增加oldCap)
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; // 哈希表为空 int oldThr = threshold; // 对应当前的threshold int newCap, newThr = 0; if (oldCap > 0) { // 情况1:表不为空,要么不扩容,要么扩容2倍 if (oldCap >= MAXIMUM_CAPACITY) { // 情况1.1: >= 最大容量,不扩容 threshold = Integer.MAX_VALUE; // 将threshold设置为最大值,size无法再触发扩容 return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) // 情况1.2:未超过最大值,将Capacity和threshold都扩容2倍 newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // 情况2:表为空,指定了initialCapacity,使用threshold中保存的initialCapacity更新newCap newCap = oldThr; else { // 情况3: 表为空,未指定initialCapacity;直接使用默认值,更新newCap和newThr newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { // 针对情况2,未更新newThr,需要进行补充更新 float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; // 使用newThr更新threshold @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { // 表不为空,容量翻倍后,需要更桶中新节点的位置 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { // 桶中存在节点 oldTab[j] = null; if (e.next == null) // 桶中只有一个节点,直接更新 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) // 基于红黑树的更新 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // 基于链表的更新 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { // 对应bit值为0,则保持原位;否则,index增加oldCap if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { // 保持原位的节点归位 loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { // 移动后的节点归位 hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
- 先计算扩容后的哈希表容量和threshold:
为何分离的后链表,一部分放在原index的位置,一部分放在index + oldCap的位置?
-
假设,oldCap为16,扩容后newCap为32
-
原始的hash为5,其第5 bit为0;使用
5 & (32 - 1)
,计算出来的新index仍然为5 —— 保持原index不变 -
原始的hash为21,其第5 bit为1;使用
21 & (32 - 1)
,计算出来的新index为21 —— 原始index + oldCapcapacity为16,对应的 n - 1为 01111 hash: 5, index: 00101 & 01111 = 00101 = 5 hash: 21,index:10101 & 01111 = 00101 = 5 capacity为32,对应的 n - 1为 11111 hash: 5, index: 00101 & 11111 = 00101 = 5 hash: 21,index:10101 & 11111 = 10101 = 21 = 5 + 16
-
总结: 当新的容量为 2 n 2^n 2n时,hash的第n位为0,则其index保持不变;第n位为1,则其index变成 index + oldCap
4.5 总结
put()
方法的实现,依靠putVal()
方法putVal()
方法:- 哈希表为空,通过扩容实现初始化;
- 否则,向对应桶按照红黑树或链表的结构,更新或插入节点;
- 其中,若插入节点后:链表长度大于8,执行树化操作;entry数目大于threshold,则进行扩容操作
treeifyBin()
方法:链表长度大于8,不一定会转为红黑树,还要求哈希表的容量 >= MIN_TREEIFY_CAPACITY(64)resize()
方法:- 先完成newCap和newThr的更新,从而更新threshold;
- 若oldTable不为空,需要遍历桶中的entry,更新entry的位置
- 桶位置的更新:不是重新计算
hash & (n - 1)
,而是根据对应bit的值决定是保持原位,还是原位 + oldCap
5. remove方法
5.1 remove方法概述
- 有往HashMap中添加key-value的需求,就有从HashMap中删除key-value的需求
- 删除key-value,对应的是remove()方法
- remove() 方法存在重载:(自己之前从未注意到)
- 一个是通过key删除key-value,一个是通过key和value删除key-value,即不仅要key匹配,还需要value也匹配才会删除
- 前者,返回key映射的value或
null
(不存在key的映射);后者,是JDK1.8 Map接口新增方法,返回true,表示成功删除key-value - 后者是JDK 1.8的新增方法,也难怪自己从未注意到了 😂
public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } public boolean remove(Object key, Object value) { return removeNode(hash(key), key, value, true, true) != null; }
- 不管是哪种 remove 方法,其内部都调用的是
removeNode()
方法 - 猜想一下 removeNode() 方法的代码逻辑:
- 通过hash确定桶位置,然后遍历桶中的entry,找到key对应的entry;
- 如果不要求value要匹配,则直接删除并返回entry;否则,value要匹配,才能删除并返回entry
- 若没有对应的entry或value不匹配,则直接返回
null
- removeNode() 方法代码如下:
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { // 桶中存在entry,遍历查找key对应的entry Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 首节点匹配 node = p; else if ((e = p.next) != null) { // 还有其他节点,按照树或链表的形式遍历 if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } // 删除entry if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) // entry是首节点 tab[index] = node.next; else // entry不是首节点,更新其前驱节点p的指向实现删除 p.next = node.next; // 结构变化,返回被被删除的entry ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
5.2 红黑树何时退回链表?
- remove节点时,如果是红黑树节点,很可能会使得节点数小于6,这时红黑树需要退回链表?
- 红黑树退回链表的方法为
untreeify()
,实际调用这个方法的地方如下
- 仔细想想,removeTreeNode引发untreeify很正常,这个split又是干啥的?
- split() 方法,在 resize() 方法中被调用,用于将红黑树按照upper和lower分成两部分,以实现rehash
- 也就是,按照新位置的计算方式,分为 index + oldCap、index两个位置的节点
- 如果split后,upper或lower中的节点数 <=
UNTREEIFY_THRESHOLD
(6),则进行untreeify操作 - 具体
untreeify()
方法如何实现的,这里不再深入探究
6. HashMap的遍历
- 最开始,还不了解HashMap的遍历方式时,自己遍历前都会上网查一下
- 自己能记住的有四种方式
- for-each遍历entrySet
- for-each遍历keySet
- for-each遍历values
- 迭代器遍历entrySet
- 这次系统学习,还有lambda表达是、stream API等
想要了解遍历方式,可以参考以下文档
- 遍历 HashMap 的 5 种最佳方式,我不信你全知道!
- HashMap 的 7 种遍历方式与性能分析! (通过entrySet或lambda表达式的性能更好,oracle的JMH框架)
6.1 基于entrySet的遍历
-
基于entrySet遍历HashMap,首先需要通过
entrySet()
方法获取entry集合public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; }
-
HashMap中有一个EntrySet的实例变量
entrySet
,如果第一次访问entrySet()
方法,会初始化entrySet变量 -
EntrySet类是HashMap的内部类
final class EntrySet extends AbstractSet<Map.Entry<K,V>>
-
EntrySet类中的
forEach()
方法,对应的就是for-each遍历public final void forEach(Consumer<? super Map.Entry<K,V>> action)
-
iterator()
方法:创建entrySet的迭代器,从而可以迭代访问entrySetpublic final Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); }
-
如果使用迭代器遍历,遍历过程中删除entry,不会触发fail-fast机制;如果使用for-each遍历,会检查modCount是否发生变化,从而触发fail-fast机制、抛出
ConcurrentModificationException
6.2 基于keySet或values的遍历
-
基于keySet或values的遍历也是如此,既支持for-each遍历,又支持迭代器遍历,都采用fail-fast机制
- 除非使用迭代器的remove方法,其他任何改变HashMap结构的方法都将使得迭代器抛出ConcurrentModificationException异常
-
下面的代码,测试了对key的for-each和迭代器遍历修改map结构的情况
-
根据执行结果可知,只有迭代器的remove方法修改map结构才不会触发ConcurrentModificationException异常
public static void keyRemove(Map<String, String> map){ // 通过foreach删除元素,触发ConcurrentModificationException for (String key: map.keySet()) { if ("2".equals(key)) { map.remove(key); } } } public static void keyAdd(Map<String, String> map){ // 通过foreach添加元素,触发ConcurrentModificationException for (String key: map.keySet()) { if ("2".equals(key)) { map.put("add", "16"); } } } public static void keyRemoveByIterator(Map<String, String> map){ // 通过迭代器删除元素,不会触发ConcurrentModificationException Iterator<String> iterator = map.keySet().iterator(); while (iterator.hasNext()){ if ("1".equals(iterator.next())){ iterator.remove(); } } } public static void keyAddByIterator(Map<String, String> map){ // 通过迭代器删除元素,不会触发ConcurrentModificationException Iterator<String> iterator = map.keySet().iterator(); while (iterator.hasNext()){ if ("1".equals(iterator.next())){ map.put("add", "16"); } } }
-
具体想要深入学习,可以参考博客:源码解析:HashMap 1.8
7. 絮絮叨叨
- 至此,HashMap的学习已经差不多了,后面会不断补充与HashMap有关的常见问题
感谢以下博文:
- 源码解析:HashMap 1.8 (讲解的非常详细,处于初级讲解吧,跟自己的博文差不多)
- Carson带你学Java:深入源码解析HashMap 1.8 (有与JDK 1.7的区别)
- HashMap 源码详细分析(JDK1.8) (图文并茂)
- Java 8系列之重新认识HashMap (美团的技术博客,在圈子里一直备受推崇的)
后续学习可以阅读的博客