HashMap学习(二)(基于JDK 1.8)

温馨提示:

  • 在本文中,entry、节点、映射的含义,几乎是等同的,不要因为一会说entry、一会说节点就蒙圈

3. 查找方法

3.1 get方法

  • 回忆之前学习TreeMap时,get()方法的实现:通过getEntry()获取到key对应的entry,然后再返回entry中的value

HashMap中的 get() 方法也是照葫芦画瓢:

  • 返回的值为null,可能是map中不存在key的映射,也可能是映射的值本身就是null

  • 要想判断map中是否存在key的映射,还是需要调用containsKey()方法

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    

核心方法:getNode()

  • 猜测,getNode()方法需要分情况查找节点(即entry):① 桶中的节点以链表的形式组织;② 桶中的节点以红黑树的形式组织
  • 不同的结构,将使用不同的遍历逻辑
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 计算桶下标,对应桶中存在节点
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) { 
            // 先检查头节点
            if (first.hash == hash && 
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 根据头节点下面连接的是红黑树 or 链表,分情况遍历
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    // 基于红黑树的查找
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 基于链表的顺序查找
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    
    

3.2 containsKey方法

  • 学习了get()方法, 接着要学习的肯定是containsKey()方法

  • 思路与TreeMap一致:先获取节点,然后判断节点是否存在,从而判断map中是否包含key

  • 或者说,判断map中是否存在key的映射

    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }
    

3.3 containsValue方法

  • TreeMap中也有containsValue() 方法,只是自己的使用的不多,被忽略了而已 😂
  • HashMap的 containsValue() 方法代码如下:
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            // 以链表的形式遍历每个桶
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }
    

疑问: 桶中可能是红黑树,怎么还以链表的形式遍历呢?

  • HashMap学习(一)中,提到HashMap的TreeNode实际继承了自身的Node,通过next和prev指针,在树化后仍然保留了原链表的节点顺序
  • 因此,这也是为何以链表的形式遍历桶中的节点,而没有考虑红黑树或链表两种情况的原因

3.4 getOrDefault方法

  • 爱刷题的同学就会发现,经常使用HashMap的getOrDefault()方法,在key不存在时返回一个默认值的情况。
  • 尤其是,使用HashMap实现计数的时候
  • getOrDefault() 方法是Map接口,在JDK1.8时新增的方法
  • getOrDefault() 方法的代码如下:
    (1)不存在key的映射,则返回默认值defaultValue;
    (2)否则,返回映射的value
    public V getOrDefault(Object key, V defaultValue) {
         Node<K,V> e;
         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
     }
    

4. put方法

4.1 put()方法概述

  • 使用过HashMap的同学,应该都知道通过put()方法可以添加key-value
    • 存在key的映射,则更新原始的value;
    • 不存在key的映射,则新增entry,存储key-value
    • 冷门: put()方法是有返回值的,返回值为oldValue或null
  • put()方法的代码如下,十分简单,重头戏在putVal()方法
    • 粗略一看呢,putVal() 方法的入参包括:key的哈希值、key、value以及两个未知的boolean入参
    • putVal() 方法存在返回值,返回值就是oldValue或null
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    

4.2 putVal()方法

  • putVal()方法的代码如下
    • onlyIfAbsent参数为true,表示存在key的映射时,不更新oldValue
    • evict参数为false,表示哈希表处于创建状态(creation mode)
    • 哈希表为空(第一次插入entry),通过扩容实现初始化
    • 哈希表不为空,对应的桶为空,直接插入entry
    • 哈希表不为空,对应的桶也不为空,向桶中更新或插入entry
    • 若存在key的映射,需要更新并返回oldValue;否则,modCount++size++
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 哈希表为空,通过扩容实现初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 对应的桶为空,直接以链表节点的形式插入
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k)))) // 首节点匹配上,直接记录首节点
                e = p;
            else if (p instanceof TreeNode) // 桶中为红黑树,实现向红黑树中新增节点
                // 若不存在key的映射,返回null
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else { // 桶中未链表,进行链表的遍历与插入
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) { // e指向链表末尾,直接插入节点
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st,binCount >=7,实际是链表长度 > 8,此时将链表转为红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 存在key映射,直接退出
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;  // 更新p,指向下一个节点
                }
            }
            if (e != null) { // 存在key的映射,更新并返回oldValue
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null) // onlyIfAbsent为false或oldValue为null,则更新oldValue
                    e.value = value;
                afterNodeAccess(e);  // 空实现,在LinkedHashMap中需要实现
                return oldValue; // 返回oldValue
            }
        }
        // 结构发生改变
        ++modCount;
        if (++size > threshold) // entry数大于threshold,需要扩容
            resize();
        afterNodeInsertion(evict); // 空实现
        return null;  // 不存在key的映射,返回null
    }
    

链表转红黑树的条件:链表长度 > 8;链表节点的插入,JDK 1.8采用尾插法

  • 这里的判断实际上让人很迷,看着是binCount >= 7,按照数组中index的对应关系,也就是长度 >= 8。
  • 然而,它是先插入节点后再做的判断,导致链表的长度+1,最终是长度 >= 9,即长度 > 8
  • 注释-1 for 1st,是有深意的,表明第一个节点的 index 为 -1,并非0
  • 附上一个辛辛苦苦画的推导图:假设待插入节点为9,基于链表的插入过程如下:
    在这里插入图片描述

4.3 treeifyBin()方法

  • treeifyBin()方法的方法说明如下,大意是:将链表转为红黑树,若哈希表比较小,会扩容而非树化

    Replaces all linked nodes in bin at index for given hash unless table is too small, in which case resizes instead.

  • 一下就蒙圈了:链表长度大于8,不就应该将链表转为红黑树了吗?怎么还需要考虑哈希表的大小呢?
  • 还是先来看看代码:
    • 从代码来看,当哈希表为空或长度小于MIN_TREEIFY_CAPACITY(64)时,直接进行扩容操作;
    • 当哈希表容量 >= 64时,会将对应桶中的链表转为红黑树
    • 链表转红黑树:(1)链表节点转树节点,通过prev和next保留链表的节点顺序;(2)使用treeify()方法将树节点组织为红黑树
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        // 哈希表为空,或小于最小树化容量,则进行扩容操作
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) { // 计算index,定位到对应的桶
            TreeNode<K,V> hd = null, tl = null;
            // 将链表节点转为树节点,通过prev和next保留原链表的节点顺序
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            // 将树节点组织为红黑树
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
    
  • 总结: 链表长度大于8,不一定会转为红黑树,可能会因为扩容被shorten

为什么要超过最小树化容量,才将链表转为红黑树?

  • 链表长度大于8的原因:
    • 哈希值散列不均,具有相同哈希值的key很多,从而计算出的桶下标一致,导致链表长度大于8
    • 哈希值散列均匀,但哈希表的容量较小,具有不同哈希值的key将对应相同的桶下标,导致链表长度大于8
  • 针对原因二,通过扩容哈希表就可以解决
  • 同时,依然能提供 O ( 1 ) O(1) O(1)的时间复杂度,而非树化后的 O ( l o g 2 N ) O(log_2N) O(log2N)的时间复杂度

参考链接:


4.4 扩容方法 —— resize()

  • resize() 方法的注释如下

    • 初始化哈希表,或将哈希表的容量翻倍
    • 如果哈希表为空,initialCapacity存储在threshold中,对应的构造方法为public HashMap(int initialCapacity, float loadFactor)public HashMap(int initialCapacity)
    • 容量翻倍:保证哈希表的容量为2的幂;
    • 扩容后,桶中的节点(链表节点或红黑树节点)要么保持原位不动,要么移动至新表中offset为2的幂的位置(后续代码中有所体现

    Initializes or doubles table size. If null, allocates in accord with initial capacity target held in field threshold. Otherwise, because we are using power-of-two expansion, the elements from each bin must either stay at same index, or move with a power of two offset in the new table.

  • resize() 方法的代码如下:

    • 先计算扩容后的哈希表容量和threshold:
      (1)哈希表不为空,要么将哈希表的容量和threshold都扩容两倍,要么不再扩容(threshold设为Integer.MAX_VALUE,直接返回oldTable)
      (2)哈希表为空,oldThr(即当前的 threshold )大于0,使用oldThr更新newCap;对应构造函数:public HashMap(int initialCapacity, float loadFactor)public HashMap(int initialCapacity)
      (3)哈希表为空,oldThr为0,说明未初始化threshold,直接使用默认值更新newCap和newThr;对应构造函数
      (4)使用newThr更新threshold
    • oldTable为空,直接返回创建好的newTable
    • oldTable不为空,需要遍历桶中的entry,将这些entry放置到正确的位置(桶下表可能不变,可能增加oldCap)
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length; // 哈希表为空
        int oldThr = threshold; // 对应当前的threshold
        int newCap, newThr = 0;
        if (oldCap > 0) { // 情况1:表不为空,要么不扩容,要么扩容2倍
            if (oldCap >= MAXIMUM_CAPACITY) {  // 情况1.1: >= 最大容量,不扩容
                threshold = Integer.MAX_VALUE; // 将threshold设置为最大值,size无法再触发扩容
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY) // 情况1.2:未超过最大值,将Capacity和threshold都扩容2倍
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // 情况2:表为空,指定了initialCapacity,使用threshold中保存的initialCapacity更新newCap
            newCap = oldThr;
        else {  // 情况3: 表为空,未指定initialCapacity;直接使用默认值,更新newCap和newThr
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) { // 针对情况2,未更新newThr,需要进行补充更新
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr; // 使用newThr更新threshold
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) { // 表不为空,容量翻倍后,需要更桶中新节点的位置
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) { // 桶中存在节点
                    oldTab[j] = null;
                    if (e.next == null) // 桶中只有一个节点,直接更新
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode) // 基于红黑树的更新
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // 基于链表的更新
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {  // 对应bit值为0,则保持原位;否则,index增加oldCap
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) { // 保持原位的节点归位
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) { // 移动后的节点归位
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    

为何分离的后链表,一部分放在原index的位置,一部分放在index + oldCap的位置?

  • 假设,oldCap为16,扩容后newCap为32

  • 原始的hash为5,其第5 bit为0;使用5 & (32 - 1),计算出来的新index仍然为5 —— 保持原index不变

  • 原始的hash为21,其第5 bit为1;使用21 & (32 - 1),计算出来的新index为21 —— 原始index + oldCap

    capacity为16,对应的 n - 1为 01111
    hash: 5, index: 00101 & 01111 = 00101 = 5
    hash: 21,index:10101 & 01111 = 00101 = 5 
    
    capacity为32,对应的 n - 111111
    hash: 5, index: 00101 & 11111 = 00101 = 5
    hash: 21,index:10101 & 11111 = 10101 = 21 = 5 + 16 
    
  • 总结: 当新的容量为 2 n 2^n 2n时,hash的第n位为0,则其index保持不变;第n位为1,则其index变成 index + oldCap

4.5 总结

  • put()方法的实现,依靠putVal() 方法
  • putVal() 方法:
    • 哈希表为空,通过扩容实现初始化;
    • 否则,向对应桶按照红黑树或链表的结构,更新或插入节点;
    • 其中,若插入节点后:链表长度大于8,执行树化操作;entry数目大于threshold,则进行扩容操作
  • treeifyBin()方法:链表长度大于8,不一定会转为红黑树,还要求哈希表的容量 >= MIN_TREEIFY_CAPACITY(64)
  • resize()方法:
    • 先完成newCap和newThr的更新,从而更新threshold;
    • 若oldTable不为空,需要遍历桶中的entry,更新entry的位置
    • 桶位置的更新:不是重新计算 hash & (n - 1),而是根据对应bit的值决定是保持原位,还是原位 + oldCap

5. remove方法

5.1 remove方法概述

  • 有往HashMap中添加key-value的需求,就有从HashMap中删除key-value的需求
  • 删除key-value,对应的是remove()方法
  • remove() 方法存在重载:(自己之前从未注意到)
    • 一个是通过key删除key-value,一个是通过key和value删除key-value,即不仅要key匹配,还需要value也匹配才会删除
    • 前者,返回key映射的value或null(不存在key的映射);后者,是JDK1.8 Map接口新增方法,返回true,表示成功删除key-value
    • 后者是JDK 1.8的新增方法,也难怪自己从未注意到了 😂
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
    
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }
    
  • 不管是哪种 remove 方法,其内部都调用的是removeNode()方法
  • 猜想一下 removeNode() 方法的代码逻辑:
    • 通过hash确定桶位置,然后遍历桶中的entry,找到key对应的entry;
    • 如果不要求value要匹配,则直接删除并返回entry;否则,value要匹配,才能删除并返回entry
    • 若没有对应的entry或value不匹配,则直接返回null
  • removeNode() 方法代码如下:
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) { // 桶中存在entry,遍历查找key对应的entry
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k)))) // 首节点匹配
                node = p;
            else if ((e = p.next) != null) {  // 还有其他节点,按照树或链表的形式遍历
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            // 删除entry
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) // entry是首节点
                    tab[index] = node.next;
                else // entry不是首节点,更新其前驱节点p的指向实现删除
                    p.next = node.next;
                // 结构变化,返回被被删除的entry
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null; 
    }
    

5.2 红黑树何时退回链表?

  • remove节点时,如果是红黑树节点,很可能会使得节点数小于6,这时红黑树需要退回链表?
  • 红黑树退回链表的方法为untreeify(),实际调用这个方法的地方如下
    在这里插入图片描述
  • 仔细想想,removeTreeNode引发untreeify很正常,这个split又是干啥的?
  • split() 方法,在 resize() 方法中被调用,用于将红黑树按照upper和lower分成两部分,以实现rehash
  • 也就是,按照新位置的计算方式,分为 index + oldCap、index两个位置的节点
  • 如果split后,upper或lower中的节点数 <= UNTREEIFY_THRESHOLD(6),则进行untreeify操作
  • 具体untreeify()方法如何实现的,这里不再深入探究

6. HashMap的遍历

  • 最开始,还不了解HashMap的遍历方式时,自己遍历前都会上网查一下
  • 自己能记住的有四种方式
    • for-each遍历entrySet
    • for-each遍历keySet
    • for-each遍历values
    • 迭代器遍历entrySet
  • 这次系统学习,还有lambda表达是、stream API等

想要了解遍历方式,可以参考以下文档

6.1 基于entrySet的遍历

  • 基于entrySet遍历HashMap,首先需要通过entrySet()方法获取entry集合

    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }
    
  • HashMap中有一个EntrySet的实例变量entrySet,如果第一次访问entrySet()方法,会初始化entrySet变量

  • EntrySet类是HashMap的内部类

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> 
    
  • EntrySet类中的forEach()方法,对应的就是for-each遍历

    public final void forEach(Consumer<? super Map.Entry<K,V>> action)
    
  • iterator()方法:创建entrySet的迭代器,从而可以迭代访问entrySet

    public final Iterator<Map.Entry<K,V>> iterator() {
        return new EntryIterator();
    }
    
  • 如果使用迭代器遍历,遍历过程中删除entry,不会触发fail-fast机制;如果使用for-each遍历,会检查modCount是否发生变化,从而触发fail-fast机制、抛出ConcurrentModificationException

6.2 基于keySet或values的遍历

  • 基于keySet或values的遍历也是如此,既支持for-each遍历,又支持迭代器遍历,都采用fail-fast机制

    • 除非使用迭代器的remove方法,其他任何改变HashMap结构的方法都将使得迭代器抛出ConcurrentModificationException异常
  • 下面的代码,测试了对key的for-each和迭代器遍历修改map结构的情况

  • 根据执行结果可知,只有迭代器的remove方法修改map结构才不会触发ConcurrentModificationException异常

    public static void keyRemove(Map<String, String> map){
        // 通过foreach删除元素,触发ConcurrentModificationException
        for (String key: map.keySet()) {
            if ("2".equals(key)) {
                map.remove(key);
            }
        }
    }
    
    public static void keyAdd(Map<String, String> map){
        // 通过foreach添加元素,触发ConcurrentModificationException
        for (String key: map.keySet()) {
            if ("2".equals(key)) {
                map.put("add", "16");
            }
        }
    }
    
    public static void keyRemoveByIterator(Map<String, String> map){
        // 通过迭代器删除元素,不会触发ConcurrentModificationException
        Iterator<String> iterator = map.keySet().iterator();
        while (iterator.hasNext()){
            if ("1".equals(iterator.next())){
                iterator.remove();
            }
        }
    }
    public static void keyAddByIterator(Map<String, String> map){
        // 通过迭代器删除元素,不会触发ConcurrentModificationException
        Iterator<String> iterator = map.keySet().iterator();
        while (iterator.hasNext()){
            if ("1".equals(iterator.next())){
                map.put("add", "16");
            }
        }
    }
    
  • 具体想要深入学习,可以参考博客:源码解析:HashMap 1.8

7. 絮絮叨叨

  • 至此,HashMap的学习已经差不多了,后面会不断补充与HashMap有关的常见问题

感谢以下博文:

后续学习可以阅读的博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值