机器学习
ALVANAN
这个作者很懒,什么都没留下…
展开
-
决策树
一 决策树介绍决策树是一种基本的分类与回归方法。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。可以认为是if-then规则集合。决策树学习通常包含3个步骤:特征选择、决策树生成、决策树剪枝二 决策树学习过程1、特征选择特征选择在于选取对训练数据具有分类能力的特征。特征选择的三个方法(1)信息增益缺点:类别做的特征的信息增益会更大,故会偏向于选择类别较多的特征,伊日惠容易产生过拟合的问题(2)信息增益率在信息增益基础上产生的方法。校正了信息增益.原创 2020-07-22 11:36:11 · 253 阅读 · 0 评论 -
机器学习算法基础概念总结
1. 基础概念(1) 10折交叉验证(10-fold cross-validation)用来测试算法的准确性。常用的测试方法。将数据集分成10份。轮流将其中的9份作为训练数据集,1份作为测试数据,进行试验,每次试验都会得到相应的正确率(或差错率)。10次结果的正确率(或差错率)的平均值作为对算法精度的估计,一般还需要进行多次10折交叉验证,再求平均值,对算法的准确性进行估计。(2)P转载 2015-08-27 22:09:49 · 677 阅读 · 0 评论 -
处理不平衡数据的八大策略
在处理分类问题过程中,数据的不平衡分布,往往对分类结果产生比较大的影响。以下是针对二项分类的数据不平衡问题进行分析。1) 可以扩大数据样本? 扩大数据样本是一个容易被忽视的选择。在集合中,一个更大的数据集,就有有可能挖掘出不同的或许更平衡的方面。之后当寻找重复采集的数据样本时,一些小样本类数据的例子可能是有帮助的。2)绩效标准的选择 混淆矩阵:将要预测的数据分到转载 2015-10-21 17:29:35 · 6389 阅读 · 0 评论