线性代数--01 方程组的几何解释

麻省理工公开课《线性代数导论》学习笔记以及个人总结

二元一次方程组与矩阵

{ 2 x − y = 0 − x + 2 y = 3 ⟹ [ 2 − 1 − 1 2 ] ∗ [ x y ] = [ 0 3 ] (1) \begin{cases} 2x -y = 0 \\ -x + 2y = 3 \end{cases} \Longrightarrow \left[\begin{matrix} 2 & -1 \\ -1 & 2 \\ \end{matrix}\right]* \left[\begin{matrix}x\\y \end{matrix}\right]= \left[\begin{matrix}0\\3 \end{matrix}\right] \tag{1} {2xy=0x+2y=3[2112][xy]=[03](1)

二元一次方程组(1),可以在二维平面直角坐标系中这样表示,两条直线的交点即为二元一次方程组的解。
方程组作图
图中红线表示 − x + 2 y = 3 -x+2y=3 x+2y=3,黄线表示 2 x − y = 0 2x-y=0 2xy=0,两条线的交点 ( 1 , 2 ) (1,2) (1,2)即为这个方程组的解。此图以方程组中的每一个方程组图,即一行一个图,也可以称为row picture。

换个角度,我们可以把多个方程的同样元素的系数一起处理,如下
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] (2) x\left[\begin{matrix}2\\-1 \end{matrix}\right] + y\left[\begin{matrix}-1\\2 \end{matrix}\right]=\left[\begin{matrix}0\\3 \end{matrix}\right] \tag{2} x[21]+y[12]=[03](2)
理解成多个列向量线性组合得到右边的向量 [ 0 ; 3 ] [0;3] [0;3],如图所示 a 1 \mathbf{a_1} a1 a 2 \mathbf{a_2} a2经过线性组合得到 b \mathbf{b} b

在这里插入图片描述
A \mathbf{A} A代表系数矩阵 [ 2 − 1 − 1 2 ] \left[\begin{matrix}2&-1\\-1&2\end{matrix}\right] [2112],让 x \mathbf{x} x代表参数矩阵 [ x y ] \left[\begin{matrix}x\\y\end{matrix}\right] [xy],让 b \mathbf{b} b代表右侧结果 [ 0 3 ] \left[\begin{matrix}0\\3\end{matrix}\right] [03],则以上方程组可以简化为 A x = b \mathbf{Ax=b} Ax=b

[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ]    ⟺    x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] (3) \left[\begin{matrix}2&-1\\-1&2\end{matrix}\right]\left[\begin{matrix}x\\y\end{matrix}\right]=\left[\begin{matrix}0\\3\end{matrix}\right] \iff x\left[\begin{matrix}2\\-1 \end{matrix}\right] + y\left[\begin{matrix}-1\\2 \end{matrix}\right]=\left[\begin{matrix}0\\3 \end{matrix}\right] \tag{3} [2112][xy]=[03]x[21]+y[12]=[03](3)

公式(3)可以理解成矩阵乘法的一种计算方法,即每个列向量分别对应的参数相乘然后相加(重要,即矩阵乘法为矩阵列向量的线性组合)。矩阵乘法的另一个计算方法是矩阵的每一个行向量分别与参数向量相乘,分别得到对应维数的值。

是否对于任意的 b \mathbf{b} b都有解,即通过对 A \mathbf{A} A中列表示的向量进行线性组合是否可以得到 b \mathbf{b} b,更进一步的是否矩阵列向量的线性组合能够覆盖整个二维平面。对于例子中的矩阵,答案是肯定的,表明这个矩阵是非奇异矩阵,且该矩阵可逆。

但是某些矩阵不具有这个“能力”,例如 [ 2 3 0 0 ] \left[\begin{matrix}2&3\\0&0\end{matrix}\right] [2030],其中一个列向量可以被另一个列向量通过缩放得到,二者的线性组合只能落在一条直线上,不能够覆盖整个二维平面,所以如果 b \mathbf{b} b没有落在这条直线上,那么将会无解。这样的矩阵称为奇异矩阵,同时是不可逆矩阵

如果是 3 ∗ 3 3*3 33矩阵表示三个三维向量,其中某个列向量被另外两个列向量通过线性组合得到,那么三个列向量的线性组合最多能张成一个平面,如果 b \mathbf{b} b不在该平面内,那么方程同样无解,该 3 ∗ 3 3*3 33矩阵也是奇异矩阵,同时是不可逆矩阵。可以依次类比其他维数多个向量的线性组合问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值