机器学习
青峰祭坛
这个作者很懒,什么都没留下…
展开
-
CART算法
CART(classification and regression tree)分类和回归树模型由Breiman等人在1984年提出,应用最广泛的决策树学习方法。CART(classification and regression tree)分类和回归树模型由Breiman等人在1984年提出,应用最广泛的决策树学习方法。CART是在给定输入随机变量X条件下 输出随机变量Y的 条件概率原创 2016-02-24 10:06:48 · 1565 阅读 · 0 评论 -
NumPy的安装
参考 下载Python中的Numpy、SciPy、MatPlotLib安装与配置版本是2.7但是 安装NumPy是出现以下错误python version 2.7 required,which was not found in the registry原因 不能再注册表中识别出来python2.7解决如下http://www.cnblog原创 2016-02-24 16:39:39 · 439 阅读 · 0 评论 -
决策树
决策树:(decision tree)是一种基本的分类和回归方法。 由结点(node)和有向边(directed edge)组成,结点分为内部节点(internal node)和叶节点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类。原创 2016-02-23 18:12:34 · 416 阅读 · 0 评论 -
silhouette value 聚类
silhouette 是一个衡量一个结点与它属聚类相较于其它聚类的相似程度。取值范围-1到1,值越大表明这个结点更匹配其属聚类而不与相邻的聚类匹配。如果大多数结点都有很高的silhouette value,那么聚类适当。若许多点都有低或者负的值,说明分类过多或者过少。silhouette 可以根据任意距离度量,如 Euclidean distance , Manhattan d原创 2016-04-16 10:51:06 · 10316 阅读 · 0 评论 -
系统学习机器学习之维度归约(完整篇)
这里,我们讨论特征选择和特征提取,前者选取重要的特征子集,后者由原始输入形成较少的新特征,理想情况下,无论是分类还是回归,我们不应该将特征选择或特征提取作为一个单独的进程,分类或者回归方法应该能够利用任何必要的特征,而丢弃不相关的特征。但是,考虑到算法存储量和时间的复杂度,或者输入不必要的特征等原因,还是需要降维。较简单的模型在小数据上更为鲁棒,有小方差,模型的变化更依赖于样本的特殊性,包括噪声,转载 2016-06-27 18:40:51 · 16731 阅读 · 0 评论 -
Java机器学习软件介绍
转自:http://www.jdon.com/bigdata/java-machine-learning.html编写程序是最好的学习机器学习的方法。你可以从头开始编写算法,但是如果你要取得更多的进展,建议你采用现有的开源库。在这篇文章中你会发现有关Java中机器学习的主要平台和开放源码库包。环境本节描述可用于机器学习的java环境或工作台。他们被称为环境,因为他们为执转载 2016-10-12 19:49:50 · 1698 阅读 · 0 评论 -
weka连接MySql 数据库
1、安装weka和mysql2、下载连接驱动程序,weka连接mysql数据库需要连接驱动程序mysql-connector-java-5.0.0-bin.jar,在weka的安装目录下C:\Program Files\Weka-3-7新建lib文件夹,将jar包复制到lib文件夹下,并且在C:\Program Files\Java\jre6\lib\ext下也放mysql-connect转载 2016-10-12 23:00:16 · 402 阅读 · 0 评论 -
weka中分类器算法
原创 2016-10-13 09:53:10 · 1335 阅读 · 0 评论