经典背包问题(装船问题)C++版

大家对背包问题想必都比较了解了,就是在限制重量的前提下使得装入的物品价值最大,当然各物品都有自己的重量和价值。

该题目有两个限制条件,一是不能超重,二是总价值最大。

这就要求在装包时既要考虑价值最大化又要防止超重,可以理解为物品重量和价值的综合体。那就可以考虑用价值和重量的比值作为一个参考,而且是最合理的指标,我们的目的是在不超重的前提下总价值最大,当然最理想的情况便是装入重量轻价值大的物品。

我们把物品重量和价值的比称为绝对比,通过排序最后将绝对比大的先装入背包,依次便可实现目的。

以下是算法的大体步骤:

1.先定义三个数组分别存储物品的重量、价值和绝对比,分别命名为weiprirat,数组大小为物品的数量,可自行设置。

2.键盘输入限定的总重量,并依次输入物品的重量和价值,根据两个数组的数据求得绝对比放入rat数组。

3.rat数组的元素进行排序(降序),同时调整weipri数组,因为最后三者要保持一致。

4.排好序后分别输出三个数组的元素,判定条件为wei数组的总重量不高于限定值,这样便可以实现问题的最优解。最后可以得出装入背包总价值、总重量以及物品数。

上代码:

#include<iostream>
using namespace std;
const int N=5;
int main()
{
	double wei[N];
	double pri[N];
	double rat[N];
	int i,j,k;
	double m;
	cout<<"请输入背包的最大载重量:"<<endl;
	cin>>m;
	cout<<"请输入各物品的重量和价值:"<<endl;
	for(i=0;i<N;i++)  cin>>wei[i]>>pri[i];
	cout<<"各个物品的绝对比为:"<<endl;
    for(i=0;i<N;i++)  rat[i]=pri[i]/wei[i];
	for(j=0;j<=N-2;j++)
		for(k=0;k<=N-2-j;k++)
		{
			double tempRat,tempPri,tempWei;
			if(rat[k]<rat[k+1])
			{
				tempWei=wei[k];
				wei[k]=wei[k+1];
				wei[k+1]=tempWei;//交换物品的重量;

				tempPri=pri[k];
				pri[k]=pri[k+1];
				pri[k+1]=tempPri;//交换物品的价值;

				tempRat=rat[k];
				rat[k]=rat[k+1];
				rat[k+1]=tempRat;//交换物品的绝对比;

			}
		}
	cout<<"按照绝对比降序排列后的物品重量数组为:"<<endl;
	for(i=0;i<N;i++)   cout<<wei[i]<<",";
	cout<<endl;
    cout<<"按照绝对比降序排列后的物品价值数组为:"<<endl;
	for(i=0;i<N;i++)   cout<<pri[i]<<",";
	cout<<endl;
	cout<<"绝对比数组为:"<<endl;
	for(i=0;i<N;i++)   cout<<rat[i]<<",";
	cout<<endl;

	int count=0;
	double sumWei=0.0,sumPri=0.0;
	while((sumWei+wei[count])<=m&&count<N)
	{
		sumWei=sumWei+wei[count];
		sumPri=sumPri+pri[count];
		count++;
	}
	cout<<"背包的总重量为:"<<sumWei<<endl;
	cout<<"背包的总价值为:"<<sumPri<<endl;
	cout<<"背包的物品数量为:"<<count<<endl;

	return 0;


}

编译之后结果如下:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyond_LH

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值