C++背包问题(01、多重、完全)

#include<stdio.h>
#define N 5 //物品数量
#define M 10 //背包容量
#define max(a,b) a>=b?a:b
int dp1[N+1][M+1];
int dp2[N+1][M+1];
int dp3[N+1][M+1];
int dpp[M+1];
int w[] = {0,2,2,6,5,4};  //体积
int v[] = {0,6,3,5,4,6};  //价值
int s[] = {0,2,3,4,2,2};  //数量

//0-1背包(物品只有一个)
int Bag_01(){
    int i,j;
    for(i=1;i<=N;i++)
        for(j=1;j<=M;j++){
            dp1[i][j] = dp1[i-1][j];
            if(j>=w[i])
                dp1[i][j] = max(dp1[i-1][j],dp1[i-1][j-w[i]]+v[i]);
        }
    return dp1[N][M];
}

//多重背包(物品有限个)
int Bag_02(){
    int i,j,k;
    for(i=1;i<=N;i++)
        for(j=1;j<=M;j++)
            for(k=0;k<=s[i] && j>=k*w[i];k++)
                dp2[i][j] = max(dp2[i][j],dp2[i-1][j-k*w[i]]+k*v[i]);
    return dp2[N][M];
}

//完全背包(物品不限个)---二维数组
int Bag_031(){
    int i,j;
    for(i=1;i<=N;i++)
        for(j=1;j<=M;j++){
            dp3[i][j] = dp3[i-1][j];
            if(j>=w[i]&&dp3[i][j]<dp3[i][j-w[i]]+v[i])
                dp3[i][j] = dp3[i][j-w[i]]+v[i];
        }
    return dp3[N][M];
}

//完全背包(物品不限个)---一维数组
int Bag_032(){
    int i,j;
    for(i=1;i<=N;i++)
        for(j=w[i];j<=M;j++)
            dpp[j]=max(dpp[j],dpp[j-w[i]]+v[i]);
    return dpp[M];
}

int main(){
    printf("-----0-1背包(物品只有一个)-----\n");
    printf("最大价值:%d\n",Bag_01());
    printf("-----多重背包(物品有限个)-----\n");
    printf("最大价值:%d\n",Bag_02());
    printf("-----多重背包(物品无限个)二维数组-----\n");
    printf("最大价值:%d\n",Bag_031());
    printf("-----多重背包(物品无限个)一维数组-----\n");
    printf("最大价值:%d\n",Bag_032());
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问题。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问题,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问题的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态移方程和计算数组dp的值,找到问题的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值