machine learning
文章平均质量分 80
海上的程序猿
计算机还是很浪漫的!!!
展开
-
机器学习之LARNN(Linear Attention Recurrent Neural Network)
Linear Attention Recurrent Neural Network(LARNN)由Guillaume Chevalier结合前人的经验于2018年八月发表的论文《LARNN: Linear Attention Recurrent Neural Network》中提出。 LARNN的核心机制是将Self-Attention Mechanisms(SAM)应用到Recurrent ...原创 2020-04-14 11:26:31 · 1436 阅读 · 0 评论 -
个人中使用caffe做回归中遇到的问题和解决办法
最近在为小论文努力,要做的是一个回归任务,导师推荐使用caffe。于是,为我的电脑装上了caffe,并通过网上的一些人的经验和分享学着使用caffe。在刚刚使用caffe时,遇到了很多困难,毕竟网上的分享都是基于图片分类的,回归的还是很少的。为了方便他人和记录自己的成长,就写下这些我遇到的一些困难和为自己的解决方案。在使用caffe时,为遇到的第一个问题就是如何把我的数据转化成caffe构建的网络所原创 2016-12-09 22:03:54 · 2461 阅读 · 3 评论 -
机器学习之DBN(Deep Belief Network,深度信念网络)
最近一直在学习DBN这个网络,前几天把RBM的一些自己了解的知识写了一下,今天就跨入主题,说一下DBN。DBN是由两部分组成,一部分是底层网络,一部分是顶层网络。按底层网络的不同,DBN可以分为MLP(多层感知器)信念网络和RBM(受限玻尔兹曼机)信念网络。 由于本人学识有限,就先暂时只说一下RBM信念网络。所谓RBM信念网络就是底层网络采用RBM,当然底层网络的层数是自己可选的。既然底层网络是多原创 2016-06-24 12:45:01 · 12081 阅读 · 11 评论 -
机器学习之RBM(Restricted Boltzmann Machines,受限玻尔兹曼机)
本人最近在学习DBN(Deep Belief Net,深度信念网络),通过学习才知道有RBM这个东西。因为我所要用到的DBN是有RBM通过累加堆叠组成的,要学习DBN就要弄明白RBM的原理。我就在此说一下我自己对RBM的认识和了解,同时也希望对别人有些帮助。 所谓受限玻尔兹曼机就是对玻尔兹曼机进行简化,使玻尔兹曼机更容易更简单地使用,原本玻尔兹曼机的隐元和显元之间是全连接的,而且隐元和隐元之间也是原创 2016-06-20 17:39:31 · 11084 阅读 · 0 评论 -
Theano安装遇到的问题及处理方式
WARNING(theano.configdefaults):g++ not detected!我最近才接触Theano,在刚刚安装Theano时,遇到了这样的问题,网上也查了好多资料,看着有点不明所以,因为我是在windows下使用的,而且使用的是python2.7.10,没下载别的集成工具。在使用pip安装时,总会失败,安装scipy失败,Theano也是。后来查看了Theano原创 2016-05-23 11:08:17 · 2657 阅读 · 1 评论 -
随笔之xgboost的简单使用
不多废话,直接上代码# -*- coding: utf-8 -*-# @Author: Phill# @Date: 2019-03-14 14:43:10# @Last Modified by: Phill# @Last Modified time: 2019-03-14 14:57:02import numpy as np import pandas as pd ...原创 2019-03-15 11:11:01 · 801 阅读 · 0 评论 -
随笔之Tensorflow2.0学习笔记
文章是个人学习Tensorflow2.0的过程中,个人认为需要记下并需要重点学习的,不做任何商业使用,希望个人学习记录的同时,能够给他人带来帮助。回调回调的功能在培训期间的不同时间点进行验证(超出内置的每个时期验证)定期检查模型或超过某个精度的阈值在训练似乎平稳时改变模型的学习率在训练似乎平稳时对顶层进行微调在训练结束或超出某个性能阈值时发生电子邮件或即时消息通知等等...原创 2019-10-10 16:55:32 · 646 阅读 · 0 评论