将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=2^10+2^8+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
用递归实现会比较简单,可以一边递归一边输出
#include <iostream>
#include <stdio.h>
#include <memory.h>
using namespace std;
void cimi(int n)
{
int a[20],num=0,i=0;
while(n)
{
if(n%2)
a[num++]=i;
i++;
n/=2;
}
for(int i=num-1;i>=0;i--)
{
if(a[i]==0) printf("2(0)");
if(a[i]==1) printf("2");
if(a[i]==2) printf("2(2)");
if(a[i]>2){ printf("2(");
cimi(a[i]);
printf(")");}
if(i)
printf("+");
}
}
int main(void)
{
int n;
while(scanf("%d",&n)!=EOF)
{
cimi(n);
printf("\n");
}
return 0;
}