问题描述
任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=27+23+2^0
现在约定幂次用括号来表示,即a^b表示为a(b)
此时,137可表示为:2(7)+2(3)+2(0)
进一步:7=22+2+20 (2^1用2表示)
3=2+2^0
所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:1315=210+28+2^5+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
正整数(1<=n<=20000)
输出格式
符合约定的n的0,2表示(在表示中不能有空格)
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
1315
样例输出
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示:采用非递归程序较难解决,可以采用边递归变输出
这里的提示也已经很明显了,说到是边递归边输出,对于我这递归学的很渣的人,确实得写写博客反思、补补了。
在这里我们先将它转化为二进制,这是毫无疑问的,在边转化为二进制时,边统计1在二进制中所出现的位置,用一个数组将它存起来如a[],但如何实现递归呢,这里如137 = 2^ 7 + 2^ 3 + 2^ 0,此时的一个数组记录下了7、3、0,但是对应的7、3不满足条件,怎么办,这里就可以采用递归了,7 = 2^ 2 + 2^ 1 + 2^ 0,这时就满足条件了,记录下对应的2、1、0,同理3 = 2^ 1 + 2^ 0也满足条件了,记录下对应的1、0。
这里又有一个很重要的点,就是终止条件,我们想一想,他只是换了一种表达形式,我们所记录下的为它的指数,所以:
1.如果a[i] == 1,输出为2
2.如果a[i] == 2,输出为2(2)
3.如果a[i] == 0,输出为2(0)
我想讲到这里应该很清楚了
代码如下:
#include<iostream>
using namespace std;
void fun(int x);
int main()
{
int n;
cin>>n;
fun(n);
return 0;
}
//对变量x和数组b进行操作
void fun(int x)
{
int a[32], i = 0, cnt = 0;
//在这里的a是不能设置为全局变量,只能在每一层使用
//如果使用全局变量,那么在每一层都会改变a里的值,那么a原来的数据就会丢失
while(x != 0)
{
int m = x%2;
if(m == 1)
{
a[cnt] = i; cnt++;
}
x /= 2; i++;
}
for(i = cnt-1; i >= 0; i--)
{
if(a[i] == 0)
printf("2(0)");
else if(a[i] == 1)
printf("2");
else if(a[i] == 2)
printf("2(2)");
else
{
printf("2("); fun(a[i]); printf(")");
}
if(i != 0)
printf("+");
}
}
强调,这里的数组a[]必须是局部变量,被重新定义,不然就会修改原来的值,在这里,被卡了好久,为什么不对呢…