POJ 3641 Pseudoprime numbers

Pseudoprime numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7396 Accepted: 3050

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes

yes


数论水题。如果p是素数,不是伪素数,否则,如果满足a的p次方取余p等于a,则p是伪素数,剩下的情况均不是。


#include <iostream>
#include <cstdio>
using namespace std;
bool is_prime(long long int m){
 for(long long int i=2;i*i<=m;i++)
 if(m%i==0)
 return false;
 return true;}
long long int mod_pow(long long int x,long long int n,long long int mod){
long long int res=1;
while(n>0){
if(n&1)
res=res*x%mod;
x=x*x%mod;
n>>=1;}
return res;}
int main(void)
{
  long long int p,a;
 while(scanf("%lld%lld",&p,&a)!=EOF&&(p||a))
 {
    if(is_prime(p))
    printf("no\n");
    else{
    if(a==mod_pow(a,p,p))
    printf("yes\n");
    else
    printf("no\n");}
 }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值