NYOJ 7 街区最短路径问题

街区邮局选址优化算法
本文探讨了在街区中寻找邮局位置的问题,以确保所有住户到邮局的距离之和达到最小。通过直接枚举、曼哈顿距离算法或找到中位数规律,解决了这一优化问题。

街区最短路径问题

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述
一个街区有很多住户,街区的街道只能为东西、南北两种方向。

住户只可以沿着街道行走。

各个街道之间的间隔相等。

用(x,y)来表示住户坐在的街区。

例如(4,20),表示用户在东西方向第4个街道,南北方向第20个街道。

现在要建一个邮局,使得各个住户到邮局的距离之和最少。

求现在这个邮局应该建在那个地方使得所有住户距离之和最小;

输入
第一行一个整数n<20,表示有n组测试数据,下面是n组数据;
每组第一行一个整数m<20,表示本组有m个住户,下面的m行每行有两个整数0<x,y<100,表示某个用户所在街区的坐标。
m行后是新一组的数据;
输出
每组数据输出到邮局最小的距离和,回车结束;
样例输入
2
3
1 1
2 1
1 2
5
2 9 
5 20
11 9
1 1
1 20
样例输出
2
44

算法分析:

本题可以通过直接枚举解决,也可以使用一些特殊的方法,而最好的则是找到取中位数这个规律或者利用曼哈顿距离算法。标准代码如下:


#include<iostream>
#include<algorithm>
using namespace std;
int x[30],y[30],n,m,i;;
int main()
{
	cin>>n;
	while(n--)
	{
		cin>>m;
		for(i=0;i<m;i++)
			cin>>x[i]>>y[i];
		sort(x,x+m);
		sort(y,y+m);
		int sum=0;
		for(i=0;i<m/2;i++)
			sum+=x[m-1-i]-x[i]+y[m-1-i]-y[i];
		cout<<sum<<endl;
	}
	return 0;
}

附加一个其它方法:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std ;
int S[20] , D[20];
int main()
{
int n ;
cin >> n ;
while(n--)
{
int m , b ;
cin >> m ;
int a = m ;
int sum1 =0, sum2=0 ;
for(int i = 0 ; i < a ; i++ )
{
cin >> S[i]>>D[i] ;
}
sort(S,S+a); sort(D,D+a);
if(a % 2==0) b = a /2;
if(a % 2==1) b = a / 2 + 1 ;
for(int i = 0 ; i < a ; i++ ) 
{
sum1+= abs(S[i]-S[b-1]) ;
sum2+=abs(D[i]-D[b-1]) ;
} 

cout<< sum1+sum2<<endl ;
}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值