街区最短路径问题
时间限制:3000 ms | 内存限制:65535 KB
难度:4
-
描述
- 一个街区有很多住户,街区的街道只能为东西、南北两种方向。
住户只可以沿着街道行走。
各个街道之间的间隔相等。
用(x,y)来表示住户坐在的街区。
例如(4,20),表示用户在东西方向第4个街道,南北方向第20个街道。
现在要建一个邮局,使得各个住户到邮局的距离之和最少。
求现在这个邮局应该建在那个地方使得所有住户距离之和最小;
-
输入
- 第一行一个整数n<20,表示有n组测试数据,下面是n组数据;
每组第一行一个整数m<20,表示本组有m个住户,下面的m行每行有两个整数0<x,y<100,表示某个用户所在街区的坐标。
m行后是新一组的数据;
输出 - 每组数据输出到邮局最小的距离和,回车结束; 样例输入
-
2 3 1 1 2 1 1 2 5 2 9 5 20 11 9 1 1 1 20
样例输出 -
2 44
- 第一行一个整数n<20,表示有n组测试数据,下面是n组数据;
算法分析:
本题可以通过直接枚举解决,也可以使用一些特殊的方法,而最好的则是找到取中位数这个规律或者利用曼哈顿距离算法。标准代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
int x[30],y[30],n,m,i;;
int main()
{
cin>>n;
while(n--)
{
cin>>m;
for(i=0;i<m;i++)
cin>>x[i]>>y[i];
sort(x,x+m);
sort(y,y+m);
int sum=0;
for(i=0;i<m/2;i++)
sum+=x[m-1-i]-x[i]+y[m-1-i]-y[i];
cout<<sum<<endl;
}
return 0;
}
附加一个其它方法:
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std ;
int S[20] , D[20];
int main()
{
int n ;
cin >> n ;
while(n--)
{
int m , b ;
cin >> m ;
int a = m ;
int sum1 =0, sum2=0 ;
for(int i = 0 ; i < a ; i++ )
{
cin >> S[i]>>D[i] ;
}
sort(S,S+a); sort(D,D+a);
if(a % 2==0) b = a /2;
if(a % 2==1) b = a / 2 + 1 ;
for(int i = 0 ; i < a ; i++ )
{
sum1+= abs(S[i]-S[b-1]) ;
sum2+=abs(D[i]-D[b-1]) ;
}
cout<< sum1+sum2<<endl ;
}
}