匈牙利算法

通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,M个剩女,每个人都可能对多名异性有好感(惊讶-_-||暂时不考虑特殊的性取向),如果一对男女互有好感,那么你就可以把这一对撮合在一起,现在让我们无视掉所有的单相思(好忧伤的感觉快哭了),你拥有的大概就是下面这样一张关系图,每一条连线都表示互有好感。


本着救人一命,胜造七级浮屠的原则,你想要尽可能地撮合更多的情侣,匈牙利算法的工作模式会教你这样做:

===============================================================================

先试着给1号男生找妹子,发现第一个和他相连的1号女生还名花无主,got it,连上一条蓝线


===============================================================================

接着给2号男生找妹子,发现第一个和他相连的2号女生名花无主,got it


===============================================================================

接下来是3号男生,很遗憾1号女生已经有主了,怎么办呢?

我们试着给之前1号女生匹配的男生(也就是1号男生)另外分配一个妹子。

(黄色表示这条边被临时拆掉)

与1号男生相连的第二个女生是2号女生,但是2号女生也有主了,怎么办呢?我们再试着给2号女生的原配(发火发火)重新找个妹子(注意这个步骤和上面是一样的,这是一个递归的过程)


此时发现2号男生还能找到3号女生,那么之前的问题迎刃而解了,回溯回去

2号男生可以找3号妹子~~~                  1号男生可以找2号妹子了~~~                3号男生可以找1号妹子

所以第三步最后的结果就是:


===============================================================================

接下来是4号男生,很遗憾,按照第三步的节奏我们没法给4号男生出来一个妹子,我们实在是无能为力了……香吉士同学走好。

===============================================================================

这就是匈牙利算法的流程,其中找妹子是个递归的过程,最最关键的字就是“”字

其原则大概是:有机会上,没机会创造机会也要上

    bool find(int x){  
        int i,j;  
        for (j=1;j<=m;j++){    //扫描每个妹子  
            if (line[x][j]==true && used[j]==false)        
            ////如果有暧昧并且还没有标记过(这里标记的意思是这次查找曾试图改变过该妹子的归属问题,但是没有成功,所以就不用瞎费工夫了  
            {  
                used[j]=1;  
                if (girl[j]==0 || find(girl[j])) {   
                    //名花无主或者能腾出个位置来,这里使用递归  
                    girl[j]=x;  
                    return true;  
                }  
            }  
        }  
        return false;  
    }  

在主程序我们这样做:每一步相当于我们上面描述的一二三四中的一步

    for (i=1;i<=n;i++)  
    {  
        memset(used,0,sizeof(used));    //这个在每一步中清空  
        if find(i) all+=1;  
    }  

算法模板(邻接表 & C++)

深度优先匈牙利算法代码

#define maxn 10//表示x集合和y集合中顶点的最大个数!
 int nx,ny;//x集合和y集合中顶点的个数
 int edge[maxn][maxn];//edge[i][j]为1表示ij可以匹配
 int cx[maxn],cy[maxn];//用来记录x集合中匹配的y元素是哪个!
 int visited[maxn];//用来记录该顶点是否被访问过!
 int path(int u)
 {
     int v;
     for(v=0;v<ny;v++)
     {
         if(edge[u][v]&&!visited[v])
         {
             visited[v]=1;
            if(cy[v]==-1||path(cy[v]))//如果y集合中的v元素没有匹配或者是v已经匹配,但是从cy[v]中能够找到一条增广路
             {
                 cx[u]=v;
                 cy[v]=u;
                 return 1;
             }
         }
     }
     return 0;
 }
 int maxmatch()
 {
     int res=0;
     memset(cx,0xff,sizeof(cx));//初始值为-1表示两个集合中都没有匹配的元素!
     memset(cy,0xff,sizeof(cy));
     for(int i=0;i<=nx;i++)
     {
         if(cx[i]==-1)
         {
             memset(visited,0,sizeof(visitited));
             res+=path(i);
         }
     }
     return res;
 }

相关POJ题目

一颗子弹可以干掉任意一行或一列的障碍,问最少需要花费多少子弹清除呢,也就是求最小点集覆盖

#include<iostream>
#include<stdio.h>
#include<string.h>
#define Max 505
using namespace std;
int a[Max][Max];
int visit[Max];
int match[Max];
int N,K;
int path(int u)
{
    int v;
    for(v=1;v<=N;v++)
    {
          if(a[u][v] && !visit[v])
          {
                visit[v] = 1;
                if(match[v] == -1 || path(match[v]))
                {
                            match[v] = u;
                            return 1;
                }  
          }
    }
    return 0;
}
int main()
{
                                                                                                          
      int i,j,k,count;
      scanf("%d %d",&N,&K);
                                                                                                          
      memset(a,0,sizeof(a));
      memset(match,-1,sizeof(match));
      count = 0;
      for(i=1;i<=K;i++)
      {
           scanf("%d %d",&j,&k);
           a[j][k] = 1;
      }
                                                                                                            
      for(i=1;i<=N;i++)
      {
             memset(visit,0,sizeof(visit));
             if(path(i))
               count++;
      }
      printf("%d\n",count);
                                                                                                          
      return 0;
}

此题重要的是做出图来,以什么样的观点作图。可以画 h*w -> h*w 的图,点i与上下左右四个点有边存在,求最大匹配,最后结果为 总点数 - 最大匹配/2

#include<iostream>
#include<stdio.h>
#include<string.h>
#define Max 520
using namespace std;
int a[Max][Max];
int visit[Max];
int match[Max];
int N;
char str[50][15];
int path(int u)
{
    int v;
    for(v=1;v<=N;v++)
    {
          if(a[u][v] && !visit[v])
          {
                visit[v] = 1;
                if(match[v] == -1 || path(match[v]))
                {
                            match[v] = u;
                            return 1;
                }  
          }
    }
    return 0;
}
int Find()
{
    int count = 0;
    int i;
    for(i=1;i<=N;i++)
    {
             memset(visit,0,sizeof(visit));
             if(path(i))
               count++;
    }
    return count;
}
int init(int h,int w) {
    int ctr,i,j;
    int x,y;
    int s,d;
    ctr=0;
    for ( i=1;i<=h;i++ ) {
        for ( j=1;j<=w;j++ ) {
            if ( str[i][j]=='*' ) {
                ctr++;
                x=i;
                y=j;
                s=(x-1)*w+y;
                if ( y+1<=w&&str[x][y+1]=='*' ) {
                    d=(x-1)*w+y+1;
                    a[s][d]=1;
                }
                if ( x+1<=h&&str[x+1][y]=='*' ) {
                    d=(x)*w+y;
                    a[s][d]=1;
                }
                if ( y-1>=1&&str[x][y-1]=='*' ) {
                    d=(x-1)*w+y-1;
                    a[s][d]=1;
                }
                if ( x-1>=1&&str[x-1][y]=='*' ) {
                    d=(x-2)*w+y;
                    a[s][d]=1;
                }
            }
        }
    }
    return ctr;
}
int main()
{
                            
      int i,j,k,n,totalnum,matchnum,h,w;
      scanf("%d",&n);
      while(n--)
      { 
          memset(a,0,sizeof(a));
          memset(match,-1,sizeof(match));
                                  
          scanf("%d %d",&h,&w);
          getchar();
          for(i=1;i<=h;i++)
          {
              for(j=1;j<=w;j++)
              {
                 scanf("%c",&str[i][j]);
              }
              getchar();
          }
                                  
          totalnum = init(h,w);
          N = h*w;
          matchnum = Find();
                                  
          printf("%d\n",totalnum - matchnum/2);
                                                 
                                  
      }
      return 0;
}//二分图

阅读更多
文章标签: 匈牙利算法
个人分类: 深度学习
上一篇Netscope:支持Caffe的神经网络结构在线可视化工具
下一篇马氏距离
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭