深度学习-理论

1,Normalization 的作用

      https://blog.csdn.net/u014525760/article/details/83619747

2,Normalization 后scale 的作用?

3,batch size 大小的影响

4,输入归一化的目的

5,  梯度消失与梯度爆炸

6,  何恺明等 arxiv << Rethinking ImageNet Pre-training >>.

     https://arxiv.org/abs/1811.08883

7,  深度学习花书读书笔记

     https://zhuanlan.zhihu.com/p/38431213

8,一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

     https://zhuanlan.zhihu.com/p/32230623

     https://zhuanlan.zhihu.com/p/32262540

     https://zhuanlan.zhihu.com/p/32338983

9,正则化

    https://www.cnblogs.com/alexanderkun/p/6922428.html

     https://zhuanlan.zhihu.com/p/36794078

10,PCA降维

     https://zhuanlan.zhihu.com/p/39854545

11,自动数据增强

        https://arxiv.org/abs/1805.09501

12,网路结构

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值