1,Normalization 的作用
https://blog.csdn.net/u014525760/article/details/83619747
2,Normalization 后scale 的作用?
3,batch size 大小的影响
4,输入归一化的目的
5, 梯度消失与梯度爆炸
6, 何恺明等 arxiv << Rethinking ImageNet Pre-training >>.
https://arxiv.org/abs/1811.08883
7, 深度学习花书读书笔记
https://zhuanlan.zhihu.com/p/38431213
8,一个框架看懂优化算法之异同 SGD/AdaGrad/Adam
https://zhuanlan.zhihu.com/p/32230623
https://zhuanlan.zhihu.com/p/32262540
https://zhuanlan.zhihu.com/p/32338983
9,正则化
https://www.cnblogs.com/alexanderkun/p/6922428.html
https://zhuanlan.zhihu.com/p/36794078
10,PCA降维
https://zhuanlan.zhihu.com/p/39854545
11,自动数据增强
https://arxiv.org/abs/1805.09501
12,网路结构
- ResNeXt , ImageNet Top5错误率:3.03% https://zhuanlan.zhihu.com/p/32913695
- 空间变换网络 STN https://zhuanlan.zhihu.com/p/37110107
- https://zhuanlan.zhihu.com/p/41738716
- https://zhuanlan.zhihu.com/p/42692080
36万+

被折叠的 条评论
为什么被折叠?



