深度学习-理论

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u014525760/article/details/83622061

1,Normalization 的作用

      https://blog.csdn.net/u014525760/article/details/83619747

2,Normalization 后scale 的作用?

3,batch size 大小的影响

4,输入归一化的目的

5,  梯度消失与梯度爆炸

6,  何恺明等 arxiv << Rethinking ImageNet Pre-training >>.

     https://arxiv.org/abs/1811.08883

7,  深度学习花书读书笔记

     https://zhuanlan.zhihu.com/p/38431213

8,一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

     https://zhuanlan.zhihu.com/p/32230623

     https://zhuanlan.zhihu.com/p/32262540

     https://zhuanlan.zhihu.com/p/32338983

9,正则化

    https://www.cnblogs.com/alexanderkun/p/6922428.html

     https://zhuanlan.zhihu.com/p/36794078

10,PCA降维

     https://zhuanlan.zhihu.com/p/39854545

11,自动数据增强

        https://arxiv.org/abs/1805.09501

12,网路结构

展开阅读全文

没有更多推荐了,返回首页