自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 shiny app制作基本思路

Shiny是基于R的实时计算服务器(serve),并通过CSS,htmlwidge,Javascript来进行拓展的web **交互界面(UI)**展现的构造工具包。R作为一种以本地会话(local session)为主要使用场景的语言,交互性、可嵌入性和自动化一直是其软肋。Rstudio希望发展基于R构建BI工具,就需要将本地的会话和线上的展示交互结合。因此,这也引出了shiny为回应以上需求...

2018-12-18 15:00:19 5518 3

原创 dplyr和data.table的数据操作对码表

缘起作为R中两个被讨论最多的数据操作包,dplyr 和data.table因其各具特色设计哲学俘获一批忠实用户。二者在整体风格和机制上的明显区别和完整的功能函数体系,也让二者的拥趸都能在各自舒适区呆着。既然都摆脱了之前的舒适区,从其他数据分析工具来到R,再从basic的方案来到第三方的包,那为何不再走出当前的舒适区,了解兼通另一方呢?正所谓最好的拥趸是知己知彼,各相活用的。概述

2018-01-29 00:26:13 1151

原创 市场研究中的数据分析知识整理 (十)-贝叶斯的方案

贝叶斯本文的所涉及的贝叶斯方法所涉及的数据和应对的问题都与之前总结相同,价值在于面对同一个问题给出不同的解决方案。

2017-08-14 11:44:01 1671 1

原创 市场研究中的数据分析知识整理 (九)-联合分析

联合分析

2017-08-11 13:31:55 4858

原创 市场研究中的数据分析知识整理 (八)-关联法则

关联法则

2017-08-10 16:45:33 907

原创 市场研究中的数据分析知识整理 (七)-结构方程模型

结构方程模型结构方程模型有极其复杂的数学背景知识要求,模型形成过程繁复且陷阱众多,结果的解释力也很大程度取决于数据质量和分析角度,同时,他又对于以问卷调查形式获得的数据,并对产品涉入度评估量级和产品复购模型等问题,有坚实的理论支持,可以很好的回应问题。

2017-08-09 10:30:11 4049

原创 市场研究中的数据分析知识整理 (六)-数据模拟

数据模拟数据模拟最直接的意义在于更好的便于R语言操作和统计学知识的练习。但另一方面,也是对市场分析中数据分析的逻辑和内在关联的总结演练。

2017-08-07 17:39:00 795

原创 市场研究中的数据分析知识整理 (五)-线性模型拓展

线性模型拓展

2017-08-06 20:33:09 820

原创 市场研究中的数据分析知识整理 (四)-主成分分析和因子分析

主成分分析和因子分析

2017-08-04 13:47:28 1552

原创 市场研究中的数据分析知识整理 (三)-聚类分析

聚类分析

2017-07-29 16:59:06 3746

原创 市场研究中的数据分析知识整理 (二)-线性模型

基本线性模型

2017-07-23 17:29:33 903

原创 市场研究中的数据分析知识整理 (一)

数据探索

2017-07-23 11:43:32 846

原创 What kind of young people group can we cluster

数据来自:https://www.kaggle.com/miroslavsabo/young-people-surveykaggle数据集聚类分析案例

2017-03-02 14:01:12 570

原创 R的爬虫和回归模型案例-以北京自如房租价格为例

本案例的目的在于,通过分析现有房租价格和房间信息之间的关系,建立基于这些信息的定价体系回归模型。

2017-02-13 11:10:54 3689 1

原创 学生酒精消费预警分类模型建立

本文希望以两个学生酒精消费程度变量为起点,利用问卷中获得的其他信息,建立对于学生酒精消费状况的分类预测模型。最终实现,一方面是学习和对比几个常见的机器学习分类模型,呈现几个算法的特点;另一方面是对模型的可用性进行一些讨论,例如结合本数据获得的预测模型,就是否能够能让学校管理者或学校社工基于一定的信息,能够预判哪些学生会有较高的酒精消费程度,从而据此做出干预。

2017-02-12 00:05:50 2004 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除