机器学习算法
文章平均质量分 92
u014540876
这个作者很懒,什么都没留下…
展开
-
L1正则化导致稀疏解的原因
设原损失函数为:L(x,θ)L(x,\theta)L(x,θ),其中模型参数为:θ\thetaθ。带L1L_1L1正则项的损失函数为:J1(x,θ)=L(x,θ)+λ∥θ∥1J_1(x,\theta)=L(x, \theta)+\lambda\parallel\theta\parallel_1J1(x,θ)=L(x,θ)+λ∥θ∥1,带L2L_2L2正则项的损失函数为:J2(x,θ)=L(x,θ)+λ∥θ∥2J_2(x,\theta)=L(x, \theta)+\lambda\parallel\原创 2020-05-16 23:11:13 · 1809 阅读 · 0 评论 -
RNN对隐含层求梯度
在看《动手学深度学习》一书时,里面有介绍简化版的对RNN求梯度。其中求隐含层梯度时,作者只是简略地说了句“将上⾯的递归公式展开”就直接给出了结果,下面我详细地给出中间步骤。αLαht=Whh⊤⋅αLαht+1+Wqh⊤⋅αLαOt\frac{\alpha L}{\alpha h_t} = W^{\top}_{hh} \cdot \frac{\alpha L}{\alpha h_{t+1}} + W^{\top}_{qh} \cdot \frac{\alpha L}{\alpha O_t} αht原创 2020-05-15 13:21:04 · 580 阅读 · 0 评论 -
支持向量机(SVM)中拉格朗日函数对w求导
首先给出拉格朗日函数: L(w,b,α)=12∥w∥2−∑i=1Nαiyi(w⋅xi+b)+∑i=1Nαi(公式1)L(w,b,α)=12∥w∥2−∑i=1Nαiyi(w⋅xi+b)+∑i=1Nαi(公式1)\begin{equation*} L(w,b,\alpha)=\frac{1}{2}{\parallel}w{\parallel}^2- \sum\limits_{i=1}^{N}\al...原创 2018-05-03 17:43:21 · 4417 阅读 · 5 评论 -
为什么拉格朗日对偶函数一定是凹函数(逐点下确界)
转载请注明出处:http://mp.blog.csdn.net/mdeditor一、问题描述首先以不严谨的方式给出标准形式的优化问题(具体请参考《凸优化》——Boyd,第五章),:min f0(x)f0(x)f_0(x)s.t.fi(x)≤0,i=1,2,⋅⋅⋅,mfi(x)≤0,i=1,2,⋅⋅⋅,m\quad f_i(x)\le0,\quad i = 1, 2, \cdot\c...原创 2018-01-24 18:42:34 · 18993 阅读 · 18 评论 -
sklearn.neural_network 中的 MLPClassifier 的部分文档翻译
sklearn.neural_network 中的 MLPClassifier 的部分文档翻译翻译 2018-03-31 09:51:21 · 2691 阅读 · 0 评论 -
ax.plot(xMat)中Mat类型参数是m*n结构的图像
转载请注明出处:http://blog.csdn.net/u014540876/article/details/79331341今天遇到一个绘制图像的函数:ax.plot(xMat),其中的参数是Mat类型的,然后就查了不少资料,却没有找到一篇解释这种情况的文章,颇费了些功夫,最终才明白绘制出的图像与参数xMat的关系。特地在此记录一下,也让自己记得更牢固。 一、当参数xMat是m*1的矩阵...原创 2018-02-16 23:14:55 · 5339 阅读 · 1 评论 -
高斯混合模型(GMM)及其求解(期望最大化(EM)算法)
转载请注明出处:http://blog.csdn.net/u014540876/article/details/791158051、高斯混合模型的公式表达高斯混合模型是指随机变量x具有如下形式的分布(概率密度函数): (公式1) 其中,参数θθθ代表所有混合成分的参数(均值向量μ与协方差矩阵Σ)的集合: (公式2) 每个混合成分的概率密度函数为: (...原创 2018-01-23 16:57:24 · 13199 阅读 · 1 评论