动态规划--机器分配

一、问题描述


题目描述

总公司拥有高效设备M台,准备分给下属的N个分公司。各分公司若获得这些设备,可以为国家提供一定的盈利。问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值。其中M≤15,N≤10。分配原则:每个公司有权获得任意数目的设备,但总台数不超过设备数M。

输入

输入数据文件格式为:第一行有两个数,第一个数是分公司数N,第二个数是设备台数M。

接下来是一个N*M的矩阵,表明了第 I个公司分配 J台机器的盈利。
输出

输出有多行。

第1行输出最大盈利值;

第2行到第n+1行输出第1到第n家分公司的分配情况。每行有2个整数,用空格隔开,分别表示分公司的编号和分配的设备数。

样例输入

3 3 
30 40 50
20 30 50

20 25 30


样例输出

70 
1 1 
2 1 

3 1 


二、思路分析

解题思路:f[i,j]表示前i个公司分配j台机器的最大盈利,v[i,j]表示第i个公司分配j台机器的盈利,状态转移方程为:

max={f[i-1,k]+v[I,j-k],max}

f[i,j]=max

1<=i<=n,1<=j<=m,0<=k<=j

f[n,m]为所求。


三、代码实现


#include <iostream>  

#include <cstdio>  

#include <algorithm>  

using namespace std;  

int main()  

{  

    int n,m,v[20][20]={0},f[20][20]={0};  

    cin>>n>>m;  

    for(int i=1;i<=n;i++)  

        for(int j=1;j<=m;j++)  

        cin>>v[i][j];  

    for(int i=1;i<=n;i++)  

    {  

        for(int j=1;j<=m;j++)  

        {  

            int maxs=0;  

            for(int k=0;k<=j;k++)  

                maxs=max(maxs,f[i-1][k]+v[i][j-k]);  

            f[i][j]=maxs;  

        }  

    }  

    printf("%d\n",f[n][m]);  

    for(int i=1;i<=n;i++)  

    {  

        if(i==1)printf("%d %d\n",i,f[i][i]);  

        else printf("%d %d\n",i,f[i][i]-f[i-1][i-1]);  

    }  

}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值