UVa 315 Network(无向图求割点)

题意:

一个无向图,求其中割点的个数目。

输入数据

第一行一个 n 代表有 n 个点

接下来有多行,一直到读入一个 0,算整个地图的读入结束,再读入一个0,文件数据结束。

每行有第一个数字a,代表接下来的数字都和 a 相连。 

 

割点:无向连通图中,如果删除某点后,图变成不连通了,则称该点为割点。

这里割点和 桥 都是无向图里的概念,大家在这里不要混淆了。

求割点

一个顶点u是割点,当且仅当满足(1)或(2)

(1) u为树根,且u有多于一个子树。

(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。(也就是说 v 没办法绕过 u 点到达比 u dfn要小的点)

注:这里所说的树是指,DFS下的搜索树。

参考资料:http://www.cnblogs.com/en-heng/p/4002658.html

                  http://blog.csdn.net/guard_mine/article/details/43021981

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

struct node
{
	int next;
	int to;
}edge[N * N];

bool instack[N];
bool cut[N];
int head[N];
int DFN[N];
int low[N];
int cnt, tot, ord, root;

void addedge (int from, int to)
{
	edge[tot].to = to;
	edge[tot].next = head[from];
	head[from] = tot++;
}

void tarjan (int u, int fa)
{
	DFN[u] = low[u] = ++ord;
	instack[u] = 1;
	int cnt = 0;
	for (int i = head[u]; ~i; i = edge[i].next)
	{
		int v = edge[i].to;
		if (v == fa)
		{
			continue;
		}
		if (DFN[v] == -1)
		{
			tarjan(v, u);
			cnt++;
			if (low[u] > low[v])
			{
				low[u] = low[v];
			}
			if (root == u && cnt > 1)
			{
				cut[u] = 1;
			}
			else if (u != root && low[v] >= DFN[u])
			{
				cut[u] = 1;
			}
		}
		else if (instack[v])
		{
			low[u] = min(low[u], DFN[v]);
		}
	}
}

void init ()
{
	memset (DFN, -1, sizeof(DFN));
	memset (low, 0, sizeof(low));
	memset (instack, 0, sizeof(instack));
	memset (cut, 0, sizeof(cut));
	memset (head, -1, sizeof(head));
	tot = 0;
	ord = 0;
}

void solve (int n)
{
	root = 1;
	tarjan (1, -1);
	int ans = 0;
	for (int i = 1; i <= n; ++i)
	{
		if (cut[i])
		{
			ans++;
		}
	}
	printf("%d\n", ans);
}

int main()
{
	int n;
	int u, v;
	while (~scanf("%d", &n), n)
	{
		init();
		while (scanf("%d", &u), u)
		{
			while (getchar() != '\n')
			{
				scanf("%d", &v);
				addedge (u, v);
				addedge (v, u);
			}
		}
		solve(n);
	}
	return 0;
}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值