题意:给出一个n * m的蛋糕,切 k 刀,每次从一个点(x,y)向 上下左右的一个方向切,问最后蛋糕被切成了几块
题解:显然,蛋糕的块数就是那么多线段的交点数 + 1。先离散,考虑向左切和向上切的,那么按照 y 的坐标递减排序,之后每一刀向上的切都是可以碰到之前向左切的线段的(如果之前的线段的x值比这刀向上的起点x大的话,图一话就很显然了)。之后向右切的和向上切的考虑的话,就是只要保证向右的起点x比向上的起点x小即可。同理讨论向右和向左分别和向下的情况。
贴一下丑陋的代码。。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int MAXN = 2e5 + 5;
const int maxn = 2e5 + 10;
const int mod = 998244353;
int c[MAXN];
struct line {
int x, y, id, sx, sy;//sx sy 为离散后坐标
}s[maxn];
bool cmp1(line a,line b)
{
return a.sy > b.sy;
}
bool cmp2(line a,line b)
{
return a.sy < b.sy;
}
int lowbit(int x) {
return x & (-x);
}
void update(int p) {
while (p <= MAXN) {
c[p] ++;
p += lowbit(p);
}
}
int getsum(int p) {
int res = 0;
while(p) {
res += c[p];
p -= lowbit(p);
}
return res;
}
bool cmpx(const line& a, const line& b) {
return a.x < b.x;
}
bool cmpy(const line& a, const line& b) {
return a.y < b.y;
}
int arrx[maxn], arry[maxn];
int main() {
int t;
scanf("%d", &t);
while (t--) {
int n, m, k;
char str[3];
scanf("%d %d %d", &n, &m, &k);
char dir[5];
for (int i = 0; i < k; ++i) {
scanf("%d %d %s", &s[i].x, &s[i].y, dir);
arrx[i] = s[i].x;
arry[i] = s[i].y;
if (dir[0] == 'L')
s[i].id = 1;
else if (dir[0] == 'R')
s[i].id = 2;
else if (dir[0] == 'U')
s[i].id = 3;
else if (dir[0] == 'D')
s[i].id = 4;
}
sort(s, s + k, cmpx);
sort(arrx, arrx + k);
n = unique(arrx, arrx + k) - arrx;
int idx = 0;
for (int i = 0; i < k; ++i) {
if (s[i].x != arrx[idx])
++idx;
s[i].sx = idx + 1;
}
sort(s, s + k, cmpy);
sort(arry, arry + k);
m = unique(arry, arry + k) - arry;
idx = 0;
for (int i = 0; i < k; ++i) {
if (s[i].y != arry[idx])
++idx;
s[i].sy = idx + 1;
}
sort(s, s + k, cmp1);
LL sum = 1;
memset(c, 0, sizeof c);
for (int i = 0; i < k; i++) {
if (s[i].id == 1)
update(s[i].sx);
if (s[i].id == 3)
sum += (getsum(MAXN) - getsum(s[i].sx - 1));
}
memset(c, 0, sizeof c);
for (int i = 0; i < k; i++) {
if (s[i].id == 2)
update(s[i].sx);
if (s[i].id == 3)
sum += getsum(s[i].sx);
}
// cout << sum << endl;
sort(s, s + k, cmp2);
// for(int i = 0; i < k; i++)
// printf("%d %d\n",s[i].sx,s[i].sy);
memset(c, 0, sizeof c);
for (int i = 0; i < k; i++) {
if (s[i].id == 1)
update(s[i].sx);
if (s[i].id == 4)
sum += getsum(MAXN) - getsum(s[i].sx - 1);
}
memset(c, 0, sizeof c);
for (int i = 0; i < k; i++) {
if (s[i].id == 2)
update(s[i].sx);
if (s[i].id == 4)
sum += getsum(s[i].sx);
}
printf("%lld\n", sum);
}
}