【论文阅读】POI2Vec: Geographical Latent Representation for Predicting Future Visitors

POI2Vec是一种结合地理因素的潜在表示模型,用于预测未来访问特定兴趣点(POI)的用户。通过考虑POI的序列转换和用户偏好,该模型在2个真实数据集上的实验优于现有方法。它引入了一种新的地理二叉树结构,以更好地捕捉POI的地理影响和用户流动行为。
摘要由CSDN通过智能技术生成

《POI2Vec: Geographical Latent Representation for Predicting Future Visitors》

Shanshan Feng, Gao Cong, Bo An, Yeow Meng Chee. 2017,AAAI
附件:论文

Abstract

随着位置感知型(location-aware)社交媒体应用的日益普及,兴趣点(POI)推荐得到了广泛的研究。然而现有的大部分研究是从用户的角度出发,为用户推荐POI。相比之下,我们考虑一个新的研究问题,即预测未来某个时期访问特定POI的用户。问题的难点在于难以有效地学习POI的序列转换以及用户偏好,并将其整合从而进行预测。我们提出了一个新的能够结合地理因素影响的潜在表示模型POI2Vec,在建模用户流动行为的过程中,这是非常重要的。我们注意到现有的表示模型没有包含地理因素的影响,我们进一步提出一种方法来联合建模用户偏好和POI顺序转换的影响,以预测给定POI的潜在访问者。我们在2个真实的数据集上进行实验,证明我们提出的方法优于最新的POI预测和未来用户预测方法。

Introduction

现有研究:

  • 关于用户移动行为和POI推荐的建模问题,Cho, Myers, and Leskovec 2011; Ye et al. 2011
  • 用户流动性受到其最近访问点及个人兴趣的高度影响,Cheng et al. 2013
  • word2vec,Mikolov and Dean 2013; Mikolov et al. 2013
  • 利用word2vec模拟用户的连续签到,Liu, Liu, and Li 2016
  • hierarchical softmax,Morin and Bengio 2005
  • 对于分层softmax的每一项,构造合适的二叉树,Mnih and Hinton 2009

在POI2Vec中,每个POI被表示为一个潜在的低维空间中的向量,两个向量之间的内积反映了两个POI之间的相关性,利用分层的softmax来学习潜在的向量。
我们提出了一种新的能够结合POI地理坐标的构建二叉树的方法,即将POI分到不同的区域中,在每个区域的POI上构建一个二叉树。由于一个POI可能会影响领近地区的POI,因此我们将一个POI分配给多个邻近区域。在生成的二叉树中,一个POI可能会出现多次,来描述其和其他POI的关系。此外,我们还对用户的偏好进行建模,即每个用户用一个潜在向量表示。
我们通过考虑用户偏好和顺序迁移来共同学习用户和POI的潜在表示。为了预测POI的潜在访问者,我们考虑最近位置的用户和最近位置未知的用户。对最近位置已知的用户,我们结合用户偏好和序列迁移进行预测,对于最近位置未知的用户,仅考虑用户偏好。主要工作:

  • 结合POI的地理影响,预测未来几小时内的潜在访问者。
  • 结合用户偏好和POI序列影响来预测POI的未来访问者。

Related Work

  • 位置推荐,Lian et al. 2014; Li, Ge, and Zhu 2016
  • 基于协同过滤方法的位置推荐,Yuan et al. 2013a; Ye et al. 2011
  • 基于因子分解模型,Cheng et al. 2012; Li et al. 2015
  • 对某个位置的用户推荐问题,Yuan et al. 2013b; Zhao et al. 2015
  • 利用马尔科夫链对序列的影响建模,Zhang, Chow, and Li 2014
  • 利用隐马尔科夫链模型对序列的影响建模,Ye, Zhu, and Cheng 2013
  • 利用因式分解的个性化马尔科夫链(FPMC)模拟个性化的POI迁移,Rendle, Freudenthaler, and Schmidt-Thieme 2010
  • 使用度量嵌入(Metric Embedding)来建模用户偏好和POI迁移进行建模,Feng et al。2015
  • 考虑兴趣点推荐的时间影响,Zhang and Wang 2015; Zhao et al. 2016; Liu et al. 2016
  • 合并类别转换模式,He et al. 2016
  • 利用word2vec进行产品推荐,Wang et al. 2015
  • 利用word2vec对签到序列进行建模,Liu, Liu, and Li 2016

Future Visitor Prediction Problem

我们用 U \mathcal{U} U来表示用户的集合,用 L \mathcal{L} L表示POI的集合,则每个POI l \mathcal{l} l都与其地理坐标 &lt; l L a t , l L o n &gt; &lt;\mathcal{l}^{Lat},\mathcal{l}^{Lon}&gt; <lLat,lLon> H \mathcal{H} H表示历史签到数据集。每一个签到元祖 ( u , l , t ) (\mathcal{u},\mathcal{l},\mathcal{t}) (u,l,t)表示用户 u \mathcal{u} u在时间 t \mathcal{t} t时访问地点 l \mathcal{l} l。给定POI,我们的目标是确定在几小时内将会访问POI的潜在访问者,定义如下:
定义1: 考虑用户集合 U \mathcal{U} U和POI集合 L \mathcal{L} L,给定POI l \mathcal{l} l,当前时间 t \mathcal{t} t和时间阈值 τ \mathcal{\tau} τ,问题目标是确定在时间内访问该POI的用户集合 [ t , t + τ ] [\mathcal{t}, \mathcal{t}+\mathcal{\tau}] [t,t+τ]

POI2Vec Representation Model

POI2Vec序列转换模型

潜在的表示方法 神经网络语言模型(Mikolov and Dean 2013; Le and Mikolov 2014)的最新进展表明,潜在表示方法可以有效地捕捉到单词之间的顺序语义关系,我们通过对两个签到数据集的分析得出,POI频率分布也遵循幂律分布和词频分布。我们可以据此用word2vec对签到序列进行建模。

给定一个用户 u \mathcal{u} u以及其当前的位置 l c u \mathcal{l}_{\mathcal{c}}^{\mathcal{u}} lcu,上下文 C ( l c u ) C(\mathcal{l}_{\mathcal{c}}^{\mathcal{u}}) C(lcu)是用户 u \mathcal{u} u在访问 l c u \mathcal{l}_{\mathcal{c}}^{\mathcal{u}} lcu之前,在给定的时间域内访问的POI。我们定义 C ( l c u ) = { l c u , 0 &lt; Δ ( l i u , l c u ) &lt; τ } C(\mathcal{l}_{\mathcal{c}}^{\mathcal{u}})=\{\mathcal{l}_{\mathcal{c}}^{\mathcal{u}},0&lt;\Delta(\mathcal{l}_{\mathcal{i}}^{\mathcal{u}},\mathcal{l}_{\mathcal{c}}^{\mathcal{u}})&lt;\tau\} C(lcu)={ lcu,0<Δ(liu,lcu)<τ},其中, Δ ( l i u , l c u ) \Delta(\mathcal{l}_{\mathcal{i}}^{\mathcal{u}},\mathcal{l}_{ {c}}^{\mathcal{u}}) Δ(liu,lcu)是访问 l i u \mathcal{l}_{\mathcal{i}}^{\mathcal{u}} liu l c u \mathcal{l}_{\mathcal{c}}^{\mathcal{u}} lcu之间的时间间隔。POI序列建模的目标是给定POI的上下文,估计访问一个POI的概率。
对于每一个POI l l l,我们都用一个 D D D维潜在空间的向量 w ( l ) ∈ R D w(l)\in R^D w(l)RD表示,我们采用连续词袋模型(CBOW)(Mikolov and Dean 2013),即根据上下文预测某个词的概率。概率 P r ( l ∣ C ( l ) ) Pr(l|C(l)) Pr(lC(l))通过softmax定义如下:
P r ( l ∣ C ( l ) ) = e w ( l ) ⋅ Φ ( C ( l ) ) / Z ( C ( l ) ) Pr(l|C(l))=e^{w(l)\cdot \boldsymbol{\Phi}(C(l))}/Z(C(l)) Pr(lC(l))=ew(l)Φ(C(l))/Z(C(l))
其中, Φ ( C ( l ) ) = ∑ l c ∈ C ( l ) w ( l c ) \boldsymbol{\Phi}(C(l))=\sum_{l_c\in C(l)} w(l_c) Φ(C(l))=lcC(l)w(lc)是上下文POI向量之和, Z ( C ( l ) ) = ∑ l i ∈ L e w ( l i ) ⋅ Φ ( C ( l ) ) Z(C(l))=\sum_{l_i\in\mathcal{L}}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值