数据流中的中位数

在牛客上看到这样一道题:

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。


解题思路:

可能看到这道题的第一反应是,这没什么难度呀,题目都说了用排序了,时间复杂度nlogn,如果这么简单的话,这题就没什么必要出了。

对于这种找出很大数据中的前几个数,或者个别数的情况,最经典的解法就是用堆。

我们可以用一个最大堆来维护当前前n/2小的元素,而且数据要动态增长,有可能之前被替换掉的元素随着元素的增加又跑回来了,所以我们不能直接把元素丢掉,而是应该用一个最小堆来存前n/2大的元素。


下面贴上代码:

class Solution {
    private:
        vector<int> min; //数组中的后一半元素组成一个最小化堆
        vector<int> max; //数组中的前一半元素组成一个最大化堆
    public:
        void Insert(int num) {
            if(((min.size()+max.size()) & 1) == 0) {  //偶数数据的情况下,则在最小堆中插入元素
                if(max.size() > 0 && num < max[0]) {
                    max.push_back(num);
                    push_heap(max.begin(), max.end(), less<int>());
                    num=max[0];
                    pop_heap(max.begin(), max.end(), less<int>());
                    max.pop_back();
                }
                min.push_back(num); //把前一半找到的最大值放到后一半中
                push_heap(min.begin(), min.end(), greater<int>());
            } else {
                if(min.size() > 0 && num > min[0]) {   //奇数数据的情况下,则在最大堆中插入元素
                    min.push_back(num);
                    push_heap(min.begin(), min.end(), greater<int>());
                    num=min[0];
                    pop_heap(min.begin(), min.end(), greater<int>());
                    min.pop_back(); 
                }
                max.push_back(num); //把后一半找到的最大值放到前一半中
                push_heap(max.begin(), max.end(), less<int>());
            }
        }

        double GetMedian() { 
            int size=min.size() + max.size();
            if(size==0) return -1;
            if((size&1) != 0) {
                return (double) min[0];
            } else {
                return (double) (max[0] + min[0]) / 2;
            }
        }
};





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值