在牛客上看到这样一道题:
题目描述
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
解题思路:
可能看到这道题的第一反应是,这没什么难度呀,题目都说了用排序了,时间复杂度nlogn,如果这么简单的话,这题就没什么必要出了。
对于这种找出很大数据中的前几个数,或者个别数的情况,最经典的解法就是用堆。
我们可以用一个最大堆来维护当前前n/2小的元素,而且数据要动态增长,有可能之前被替换掉的元素随着元素的增加又跑回来了,所以我们不能直接把元素丢掉,而是应该用一个最小堆来存前n/2大的元素。
下面贴上代码:
class Solution {
private:
vector<int> min; //数组中的后一半元素组成一个最小化堆
vector<int> max; //数组中的前一半元素组成一个最大化堆
public:
void Insert(int num) {
if(((min.size()+max.size()) & 1) == 0) { //偶数数据的情况下,则在最小堆中插入元素
if(max.size() > 0 && num < max[0]) {
max.push_back(num);
push_heap(max.begin(), max.end(), less<int>());
num=max[0];
pop_heap(max.begin(), max.end(), less<int>());
max.pop_back();
}
min.push_back(num); //把前一半找到的最大值放到后一半中
push_heap(min.begin(), min.end(), greater<int>());
} else {
if(min.size() > 0 && num > min[0]) { //奇数数据的情况下,则在最大堆中插入元素
min.push_back(num);
push_heap(min.begin(), min.end(), greater<int>());
num=min[0];
pop_heap(min.begin(), min.end(), greater<int>());
min.pop_back();
}
max.push_back(num); //把后一半找到的最大值放到前一半中
push_heap(max.begin(), max.end(), less<int>());
}
}
double GetMedian() {
int size=min.size() + max.size();
if(size==0) return -1;
if((size&1) != 0) {
return (double) min[0];
} else {
return (double) (max[0] + min[0]) / 2;
}
}
};