[DP LIS] BZOJ 4282 慎二的随机数列

本文介绍了一种求解最长上升子序列的算法实现,并针对序列中包含随机数的情况提出了解决方案。通过调整序列数值并利用动态规划思想,有效地解决了问题。

显然随机的数全部属于上升序列肯定能构造出最优解,那么直接认为随机的数都在最优解中。 
如果是求最长不上升子序列的话就直接去掉所有的随机数求一遍然后加上随机数的个数。 
现在是让求最长上升子序列,只需把每个数都减去前面随机的数的个数然后求一遍再加上随机数的个数即为答案!

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;

inline char nc()
{
	static char buf[100000],*p1=buf,*p2=buf;
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
	return *p1++;
}

inline void read(int &x){
	char c=nc(),b=1;
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

inline void read(char &x){
	for (x=nc();x!='K' && x!='N';x=nc());
}

int n,a[100005];
int c[100005],len;

int main()
{
	int in,icnt=0; char order;
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	read(in);
	for (int i=1;i<=in;i++)
	{
		read(order);
		if (order=='N') 
			icnt++;
		else 
			read(a[++n]),a[n]-=icnt;
	}
	c[++len]=a[1];
	for (int i=2;i<=n;i++)
	{
		if (a[i]>c[len]){
			c[++len]=a[i]; continue;
		}
		int iter=lower_bound(c+1,c+len+1,a[i])-c;
		c[iter]=a[i];
	}
	printf("%d\n",len+icnt);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值