[主席树] BZOJ 3932 [CQOI2015]任务查询系统

题目大意:前k大的和


裸题


#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

inline char nc()
{
	static char buf[100000],*p1=buf,*p2=buf;
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
	return *p1++;
}

inline void read(int &x)
{
	char c=nc(),b=1;
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=200005;

int n;
int root[N],ls[21*N],rs[21*N],cnt[21*N];
ll sum[21*N];
int ncnt;

int sx[N],icnt;
inline int Bin(int x){
	return lower_bound(sx+1,sx+icnt+1,x)-sx;
}

inline void update(int x){
	cnt[x]=cnt[ls[x]]+cnt[rs[x]];
	sum[x]=sum[ls[x]]+sum[rs[x]];
}

void Modify(int &y,int x,int l,int r,int t,int f){
	y=++ncnt; int mid=(l+r)>>1;
	if (l==r){
		cnt[y]=cnt[x]+f; 
		sum[y]=sum[x]+f*sx[t];
		return;
	}
	if (t<=mid) 
		rs[y]=rs[x],Modify(ls[y],ls[x],l,mid,t,f),update(y);
	else
		ls[y]=ls[x],Modify(rs[y],rs[x],mid+1,r,t,f),update(y);
}

inline ll Query(int y,int k,int l,int r){
	if (l==r)
		return min(k,cnt[y])*sx[l];
	int tmp=cnt[ls[y]],mid=(l+r)>>1;
	if (k<=tmp)
		return Query(ls[y],k,l,mid);
	else
		return sum[ls[y]]+Query(rs[y],k-tmp,mid+1,r);
}

struct event{
	int t,f,x;
	event(int t=0,int f=0,int x=0):t(t),f(f),x(x) { }
	bool operator < (const event& B) const {
		return t==B.t?(f==B.f?x<B.x:f<B.f):t<B.t;
	}
}eve[N];
int etot;

int main()
{
	int Q,a,b,c,l,r,K;
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	read(n); read(Q);
	for (int i=1;i<=n;i++)
	{
		read(l); read(r); read(a);
		eve[++etot]=event(l,1,a); eve[++etot]=event(r+1,-1,a);
		sx[++icnt]=a;
	}
	sort(sx+1,sx+icnt+1);
	icnt=unique(sx+1,sx+icnt+1)-sx-1;
	sort(eve+1,eve+etot+1);
	for (int i=1;i<=etot;i++)
	{
		eve[i].x=Bin(eve[i].x);
		Modify(root[i],root[i-1],1,icnt,eve[i].x,eve[i].f);
	}
	ll pre=1;
	while (Q--)
	{
		read(l); read(a); read(b); read(c);
		K=1+(pre*a+b)%c;
		int ed=lower_bound(eve+1,eve+etot+1,event(l,1,1<<30))-eve-1;
		pre=Query(root[ed],K,1,icnt);
		printf("%lld\n",pre);
	}
	return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值