[KM算法] BZOJ 2539 [Ctsc2000]丘比特的烦恼

本文介绍了一个基于 Kuhn-Munkres (KM) 算法的 C++ 实现,该算法用于解决分配问题,如寻找加权完全图中的最大匹配。代码中包含了详细的 KM 算法实现过程,并结合了几何运算来处理特定场景下的匹配问题,例如考虑了实数坐标、字符串大小写敏感性以及边的连接限制。
摘要由CSDN通过智能技术生成

这就很裸了

只是坑点实在多

坐标有实数

字串大小写

不可连的边设为-inf

貌似题目保证有完备匹配?


#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<map>
#include<string>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;

const int N=35;

int n,ans,w[N][N];
int boy[N],lx[N],ly[N],sla[N];
int S[N],T[N];

inline bool match(int u){
    S[u]=1;
    for (int v=1;v<=n;v++){
        if (T[v]) continue;
        if (lx[u]+ly[v]==w[u][v]){
            T[v]=1;
            if (!boy[v] || match(boy[v]))
                return boy[v]=u,1;
        }
        else
            sla[v]=min(sla[v],lx[u]+ly[v]-w[u][v]);
    }
    return 0;
}

inline int KM()
{
    cl(boy); cl(ly);
    for (int i=1;i<=n;i++)
    {
        lx[i]=-1<<30;
        for (int j=1;j<=n;j++) lx[i]=max(lx[i],w[i][j]);
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=n;j++) sla[j]=1<<30;
        for (;;)
        {
            cl(S); cl(T);
            if (match(i)) break;
            int a=1<<30;
            for (int j=1;j<=n;j++) if (!T[j]) a=min(a,sla[j]);
            for (int j=1;j<=n;j++) if (S[j]) lx[j]-=a;
            for (int j=1;j<=n;j++) if (T[j]) ly[j]+=a; else sla[j]-=a;
        }
    }
    int ret=0;
    for (int i=1;i<=n;i++) if (boy[i]) ret+=w[boy[i]][i];
    return ret;
}

void ToUpperString(string &str)
{
    transform(str.begin(), str.end(), str.begin(), (int (*)(int))toupper);
}

inline int dcmp(double a,double b){
    if (fabs(a-b)<1e-6) return 0;
    if (a<b) return -1; return 1;
}

inline double sqr(double a){ return a*a; }

struct Point{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y) { }
    void read() { cin>>x>>y; }
    friend Point operator - (Point A,Point B){
        return Point(A.x-B.x,A.y-B.y);
    }
    friend double operator * (Point A,Point B){
        return A.x*B.y-B.x*A.y;
    }
    friend double Dist(Point A,Point B){
        return sqrt(sqr(A.x-B.x)+sqr(A.y-B.y));
    }
    friend bool Jud(Point p0,Point p1,Point p2){
        double x1,x2;
        x1=p1.x; x2=p2.x; if (x1>x2) swap(x1,x2);
        if (!(dcmp(x1,p0.x)<=0 && dcmp(p0.x,x2)<=0)) return 0;
        x1=p1.y; x2=p2.y; if (x1>x2) swap(x1,x2);
        if (!(dcmp(x1,p0.y)<=0 && dcmp(p0.y,x2)<=0)) return 0;
        return dcmp((p1-p0)*(p2-p0),0)==0;
    }
}sx[N],sy[N];

map<string,int> Name;
double K;

int main()
{
    string name; int iu,iv;
    freopen("t.in","r",stdin);
    freopen("t.out","w",stdout);
    cin>>K>>n;
    for (int i=1;i<=n;i++){
        sx[i].read(); cin>>name; ToUpperString(name); Name[name]=i;
    }
    for (int i=1;i<=n;i++){
        sy[i].read(); cin>>name; ToUpperString(name); Name[name]=n+i;
    }
    for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) w[i][j]=1;
    while (1)
    {
        cin>>name; if (name==string("End")) break;
        ToUpperString(name); iu=Name[name]; cin>>name; ToUpperString(name); iv=Name[name];
        if (iu>iv) swap(iu,iv);
        iv-=n;
        cin>>w[iu][iv];
    }
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            for (int k=1;k<=n;k++)
            {
                if (dcmp(Dist(sx[i],sy[j]),K)>0)
                    w[i][j]=-1e8;
                else if (k!=i && Jud(sx[k],sx[i],sy[j]))
                    w[i][j]=-1e8;
                else if (k!=j && Jud(sy[k],sx[i],sy[j]))
                    w[i][j]=-1e8;
            }
    ans=KM();
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值