[分块 暴力 树] BZOJ 4381 [POI2015]Odwiedziny

24 篇文章 0 订阅
21 篇文章 0 订阅

大概就是步数小的预处理前缀和

步数大的直接倍增跳

各种细节搞得欲仙欲死


#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
  return *p1++;
}

inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=50005;
const int K=21;
const int M=305;

struct edge{
  int u,v,next;
}G[N<<1];
int head[N],inum;

inline void add(int u,int v,int p){
  G[p].u=u; G[p].v=v; G[p].next=head[u]; head[u]=p;
}

int n,B; ll ans;
int val[N],bp[N];
int depth[N],fat[N][K];
ll S[N][M];
#define V G[p].v
inline void dfs(int u,int fa){
  depth[u]=depth[fa]+1; fat[u][0]=fa;
  for (int k=1;k<K;k++)
    fat[u][k]=fat[fat[u][k-1]][k-1];
  int f=fa;
  for (int i=1;i<=B;i++)
    S[u][i]=S[f][i]+val[u],f=fat[f][0];
  for (int p=head[u];p;p=G[p].next)
    if (V!=fa)
      dfs(V,u);
}

inline int LCA(int u,int v){
  if (depth[u]<depth[v]) swap(u,v);
  for (int k=K-1;~k;k--)
    if ((depth[u]-depth[v])>>k&1)
      u=fat[u][k];
  if (u==v) return u;
  for (int k=K-1;~k;k--)
    if (fat[u][k]!=fat[v][k])
      u=fat[u][k],v=fat[v][k];
  return fat[u][0];
}

inline int Fat(int u,int s){
  for (int k=K-1;~k;k--)
    if (s>>k&1)
      u=fat[u][k];
  return u;
}

inline ll Solve(int u,int v,int cp){
  int lca=LCA(u,v),len=depth[u]+depth[v]-2*depth[lca],t,l1,l2;
  ll ret=0;
  if (len<=cp) return val[u]+val[v];
  if (cp>B){
    ret+=val[u];
    while (1){
      t=Fat(u,cp);
      if (depth[t]>=depth[lca])
	ret+=val[t],u=t;
      else
	break;
    }
    if (v!=lca){
      ret+=val[v];
      if (len%cp){
	v=Fat(v,len%cp);
	if (depth[v]>depth[lca])
	  ret+=val[v];
      }
      while (1){
	t=Fat(v,cp);
	if (depth[t]>depth[lca])
	  ret+=val[t],v=t;
	else
	  break;
      }
      return ret;
    }else{
      if (len%cp) ret+=val[v];
      return ret;
    }
  }
  if (u==lca)
    ret+=val[lca];
  else{
    l1=((depth[u]-depth[lca])/cp+1)*cp;
    t=Fat(u,l1);
    ret+=S[u][cp]-S[t][cp];
  }
  if (v!=lca){
    if (len%cp)
      ret+=val[v],v=Fat(v,len%cp);
    if (depth[v]<=depth[lca]) return ret;
    l2=((depth[v]-depth[lca]-1)/cp+1)*cp;
    t=Fat(v,l2);
    ret+=S[v][cp]-S[t][cp];
  }
  else{
    if (len%cp)
      ret+=val[v];
  }
  return ret;
}

int main(){
  int iu,iv,ic;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(n); B=min(n,(int)(sqrt(n)/log(n)+1));
  for (int i=1;i<=n;i++)
    read(val[i]);
  for (int i=1;i<n;i++)
    read(iu),read(iv),add(iu,iv,++inum),add(iv,iu,++inum);
  dfs(1,0);
  for (int i=1;i<=n;i++)
    read(bp[i]);
  for (int i=1;i<n;i++)
    read(ic),printf("%lld\n",Solve(bp[i],bp[i+1],ic));
  return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值