建图十分明显 就是求最短的路径覆盖所有边
对于每个连通分量
要是存在欧拉回路 那么就是边数+1
如果不存在欧拉回路 那么加边成为欧拉回路 然后任意拆一条边 所以就是边数
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=1005;
namespace Tset{
int fat[N],rank[N];
inline void init(int n){
for (int i=1;i<=n;i++) fat[i]=i,rank[i]=0;
}
inline int Fat(int u){
return u==fat[u]?u:fat[u]=Fat(fat[u]);
}
inline bool Merge(int x,int y){
x=Fat(x); y=Fat(y); if (x==y) return 0;
if (rank[x]>rank[y]) swap(x,y);
if (rank[x]==rank[y]) rank[y]++;
fat[x]=y; return 1;
}
}
int n,K,Ans;
int deg[N];
int vst[N],tag[N];
int main(){
using namespace Tset;
int iu,iv;
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
scanf("%d",&n); init(1000);
for (int i=1;i<=n;i++) scanf("%d%d",&iu,&iv),deg[iu]++,deg[iv]--,vst[iu]=vst[iv]=1,Merge(iu,iv);
for (int i=1;i<=1000;i++)
if (deg[i])
tag[Fat(i)]=1;
for (int i=1;i<=1000;i++)
if (vst[i] && Fat(i)==i && !tag[i])
K++;
for (int i=1;i<=1000;i++)
Ans+=deg[i]>0?deg[i]:-deg[i];
Ans/=2;
Ans+=n;
Ans+=K;
printf("%d\n",Ans);
return 0;
}