[欧拉回路] BZOJ 2935 [Poi1999]原始生物 Primitivus

建图十分明显 就是求最短的路径覆盖所有边

对于每个连通分量 

要是存在欧拉回路 那么就是边数+1

如果不存在欧拉回路 那么加边成为欧拉回路 然后任意拆一条边 所以就是边数


#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;

const int N=1005;

namespace Tset{
  int fat[N],rank[N];
  inline void init(int n){
    for (int i=1;i<=n;i++) fat[i]=i,rank[i]=0;
  }
  inline int Fat(int u){
    return u==fat[u]?u:fat[u]=Fat(fat[u]);
  }
  inline bool Merge(int x,int y){
    x=Fat(x); y=Fat(y); if (x==y) return 0;
    if (rank[x]>rank[y]) swap(x,y);
    if (rank[x]==rank[y]) rank[y]++;
    fat[x]=y; return 1;
  }
}

int n,K,Ans;
int deg[N];
int vst[N],tag[N];

int main(){
  using namespace Tset;
  int iu,iv;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  scanf("%d",&n); init(1000);
  for (int i=1;i<=n;i++) scanf("%d%d",&iu,&iv),deg[iu]++,deg[iv]--,vst[iu]=vst[iv]=1,Merge(iu,iv);
  for (int i=1;i<=1000;i++)
    if (deg[i])
      tag[Fat(i)]=1;
  for (int i=1;i<=1000;i++)
    if (vst[i] && Fat(i)==i && !tag[i])
	K++;
  for (int i=1;i<=1000;i++)
    Ans+=deg[i]>0?deg[i]:-deg[i];
  Ans/=2;
  Ans+=n;
  Ans+=K;
  printf("%d\n",Ans);
  return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许随意转载。 https://blog.csdn.net/u014609452/article/details/53705451
个人分类: 图论 欧拉回路
上一篇[博弈] BZOJ 2927 [Poi1999]多边形之战 Polygons
下一篇[区间DP 中位数] BZOJ 2933 [Poi1999]地图 Map
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭