[几何] BZOJ 1132 [POI2008]Tro

裸的做是 O(n3)
按极角排序后 用分配律 就可以 O(n2logn)

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;

const int N=3005;

struct PP{
  int x,y;
  PP(int x=0,int y=0):x(x),y(y) { }
  bool read() { int _x,_y; if (scanf("%d%d",&_x,&_y)==-1) return 0; x=_x; y=_y; return 1; }
  PP operator - () { return PP(-x,-y); }
  friend PP operator + (PP A,PP B) { return PP(A.x+B.x,A.y+B.y); }
  friend PP operator - (PP A,PP B) { return PP(A.x-B.x,A.y-B.y); }
  friend PP operator * (PP A,int B) { return PP(A.x*B,A.y*B); }
  friend PP operator / (PP A,int B) { return PP(A.x/B,A.y/B); } 
  friend int operator * (PP A,PP B) { return A.x*B.x+A.y*B.y; }
  friend ll det(PP A,PP B) { return (ll)A.x*B.y-(ll)A.y*B.x; }
}a[N],b[N];

bool cmp(PP A,PP B){ return A.y<B.y||(A.y==B.y&&A.x<B.x); }  
bool cmp_(PP A,PP B){ return det(A,B)>0; }  

int n,m;  
ll ans;  

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  scanf("%d",&n);  
  for (int i=1;i<=n;i++) a[i].read();  
  sort(a+1,a+n+1,cmp);
  for (int i=1;i<=n-2;i++){
    PP sum=PP(0,0); int tot=0;  
    for (int j=i+1;j<=n;j++)
      b[++tot]=a[j]-a[i];
    sort(b+1,b+tot+1,cmp_);  
    for (int j=1;j<=tot;j++)
      ans+=det(sum,b[j]),sum=sum+b[j];
  }  
  printf("%lld.%d\n",ans>>1,ans&1?5:0);  
  return 0;  
}  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值