注意这里的本质不同的含义 是左边和右边的障碍集合不同
那么我们要考虑怎么去重 我们要求能向右走就向右走
也就是说我们考虑把所有向左上的角都折叠起来
然后就可以扫描线加线段树了
我们遇到一个障碍 就把能爬上来的都统计到障碍上面的那格
注意能爬需要一些判断
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<set>
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}
const int P=1e9+7;
inline void _add(int &x,int y){
x+=y; if (x>=P) x-=P;
}
const int N=1000005;
int T[N<<2],F[N<<2];
inline void modify(int x,int l,int r,int ql,int qr){
if (ql<=l && r<=qr){
T[x]=0; F[x]=1;
return;
}
if (F[x]) T[x<<1]=T[x<<1|1]=0,F[x<<1]=F[x<<1|1]=1,F[x]=0;
int mid=(l+r)>>1;
if (ql<=mid) modify(x<<1,l,mid,ql,qr);
if (qr>mid) modify(x<<1|1,mid+1,r,ql,qr);
T[x]=(T[x<<1]+T[x<<1|1])%P;
}inline void add(int x,int l,int r,int t,int a){
if (l==r)
return void(_add(T[x],a));
if (F[x]) T[x<<1]=T[x<<1|1]=0,F[x<<1]=F[x<<1|1]=1,F[x]=0;
int mid=(l+r)>>1;
if (t<=mid) add(x<<1,l,mid,t,a);
else add(x<<1|1,mid+1,r,t,a);
T[x]=(T[x<<1]+T[x<<1|1])%P;
}
inline int query(int x,int l,int r,int ql,int qr){
if (ql<=l && r<=qr)
return T[x];
if (F[x]) T[x<<1]=T[x<<1|1]=0,F[x<<1]=F[x<<1|1]=1,F[x]=0;
int ret=0,mid=(l+r)>>1;
if (ql<=mid) _add(ret,query(x<<1,l,mid,ql,qr));
if (qr>mid) _add(ret,query(x<<1|1,mid+1,r,ql,qr));
return ret;
}
struct event{
int f,x,y,y2;
event(int f=0,int x=0,int y=0,int y2=0):f(f),x(x),y(y),y2(y2) { }
bool operator < (const event &B) const{
return x==B.x?(f==B.f?y>B.y:f<B.f):x<B.x;
}
}ev[N<<1];
int tot;
int n,m;
set<int> Set;
inline int Ans(int x){
int y=-(*Set.lower_bound(-x));
return query(1,1,m,y,x);
}
namespace BIT{
int c[N],maxn;
inline void init(int n){
maxn=n;
}
inline void add(int x,int r){
for (int i=x;i<=maxn;i+=i&-i)
c[i]+=r;
}
inline void add(int l,int r,int x){
add(l,x),add(r+1,-x);
}
inline int C(int x){
int ret=0;
for (int i=x;i;i-=i&-i)
ret+=c[i];
return ret;
}
}
int main(){
int K,x1,x2,y1,y2;
freopen("ski.in","r",stdin);
freopen("ski.out","w",stdout);
read(n); read(m); read(K);
while (K--){
read(x1); read(y1); read(x2); read(y2);
ev[++tot]=event(1,x1,y1,y2);
ev[++tot]=event(2,x2+1,y1,y2);
}
ev[++tot]=event(3,1,1,0);
sort(ev+1,ev+tot+1);
int p=1; Set.insert(-1);
BIT::init(m);
for (int i=1;i<=n;i++){
int l=p,r;
for (;p<=tot && ev[p].x==i;p++);
r=p-1;
int last=m+1;
for (int j=l;j<=r;j++)
if (ev[j].f==1){
if (ev[j].y2<m && BIT::C(ev[j].y2+1)==0 && BIT::C(ev[j].y2)==0 && ev[j].y2+1!=last){
int tmp=Ans(ev[j].y2);
add(1,1,m,ev[j].y2+1,tmp);
}
modify(1,1,m,ev[j].y,ev[j].y2);
last=ev[j].y;
}else if (ev[j].f==3)
add(1,1,m,1,1);
for (int j=l;j<=r;j++)
if (ev[j].f==2){
BIT::add(ev[j].y,ev[j].y2,-1);
Set.erase(-(ev[j].y2+1));
}
for (int j=l;j<=r;j++)
if (ev[j].f==1){
BIT::add(ev[j].y,ev[j].y2,1);
Set.insert(-(ev[j].y2+1));
}
}
int ans=Ans(m);
printf("%d\n",ans);
return 0;
}