[数位DP Lucas定理] 2017 计蒜之道 复赛 E. 商汤智能机器人

767人阅读 评论(3) 收藏 举报
分类:

阿爷教导我

i=0(Ai)(A+BiA),A=x+y2,B=xy2

然后就是数位dp+lucas定理的套路了
注意有减法要处理退位 一开始写的时候考虑的有点问题 调了很久很久
这个可以从低到高 也可以从高到低 因为意识模糊就都写了一遍

从高到低

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int P=100003;
//const int P=3;

ll fac[P],inv[P];

inline void Pre(){
  fac[0]=1; for (int i=1;i<P;i++) fac[i]=fac[i-1]*i%P;
  inv[1]=1; for (int i=2;i<P;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
  inv[0]=1; for (int i=1;i<P;i++) inv[i]=inv[i]*inv[i-1]%P;
}
inline ll C(int n,int m){
  if (n<m) return 0;
  return fac[n]*inv[m]%P*inv[n-m]%P;
}

ll f[10][2][2];

int a[10],m;
int b[10],m0;

inline ll Solve(ll A,ll B){
  ll tt=A+B; while (tt) a[++m]=tt%P,tt/=P;
  tt=A; while (tt) b[++m0]=tt%P,tt/=P;

  f[m+1][0][0]=1;
  for (int s=m;s;s--)
    for (int t=0;t<2;t++)
      for (int k=0;k<2;k++){
    if (f[s+1][t][k]){
      int lim=t==0?a[s]:P-1;
      if (k) a[s]+=P;
      for (int i=0;i<=min(lim,a[s]);i++){
        int nt=t|(i<lim);
        if (a[s]-i<P)
          (f[s][nt][0]+=f[s+1][t][k]*C(b[s],i)%P*C(a[s]-i,b[s])%P)%=P;
        if (i<a[s] && a[s]-i-1<P){
          (f[s][nt][1]+=f[s+1][t][k]*C(b[s],i)%P*C(a[s]-i-1,b[s])%P)%=P;
        }
      }
      if (k) a[s]-=P;
    }
    }
  return (f[1][0][0]+f[1][1][0])%P;
}

int main(){
  freopen("t.in","r",stdin);
  freopen("t2.out","w",stdout);
  ll x,y;
  Pre();
  scanf("%lld%lld",&x,&y);
  if ((x+y)%2!=0 || x<y) return printf("0\n"),0;
  ll A=(x+y)/2,B=(x-y)/2;
  //ll ret=0;
  //for (int i=0;i<=A+B;i++)
  //  ret+=C(A+B-i,A)*C(A,i)%P;
  //printf("%lld\n",ret%P);
  printf("%lld\n",Solve(A,B));
  return 0;
}

从低到高

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int P=100003;
//const int P=3;

ll fac[P],inv[P];

inline void Pre(){
  fac[0]=1; for (int i=1;i<P;i++) fac[i]=fac[i-1]*i%P;
  inv[1]=1; for (int i=2;i<P;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
  inv[0]=1; for (int i=1;i<P;i++) inv[i]=inv[i]*inv[i-1]%P;
}
inline ll C(int n,int m){
  if (n<m) return 0;
  return fac[n]*inv[m]%P*inv[n-m]%P;
}

ll f[10][2];

int a[10],m;
int b[10],m0;

inline ll Solve(ll A,ll B){
  ll tt=A+B; while (tt) a[++m]=tt%P,tt/=P;
  tt=A; while (tt) b[++m0]=tt%P,tt/=P;

  f[1][0]=1;
  for (int i=1;i<=m;i++)
    for (int t=0;t<2;t++)
      if (f[i][t])
    for (int j=0;j<P;j++)
      if (a[i]-t-j<0)
        (f[i+1][1]+=f[i][t]*C(a[i]+P-t-j,b[i])%P*C(b[i],j)%P)%=P;
      else
        (f[i+1][0]+=f[i][t]*C(a[i]-t-j,b[i])%P*C(b[i],j)%P)%=P;

  return f[m+1][0];
}

int main(){
  ll x,y;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  Pre();
  scanf("%lld%lld",&x,&y);
  if ((x+y)%2!=0 || x<y || x+y<0) return printf("0\n"),0;
  ll A=(x+y)/2,B=(x-y)/2;
  //ll ret=0;
  //for (int i=0;i<=A+B;i++)
  //  ret+=C(A+B-i,A)*C(A,i)%P;
  //printf("%lld\n",ret%P);
  printf("%lld\n",Solve(A,B));
  return 0;
}
查看评论

[Lucas+数位DP] 2015 计蒜之道 复赛 C. 360的产品试用体验

就是Lucas+数位DP的套路。这题和一般的数位DP相比有个特别的限制是 x1+x2+x3≤nx1+x2+x3\le n,类似HNOI 2007《梦幻岛宝珠》的处理方法,即相当于借位,保存当前这位剩余...
  • CHHNZ
  • CHHNZ
  • 2017-10-11 16:07:41
  • 155

【XSY2691】中关村 卢卡斯定理 数位DP

题目描述   在一个kk维空间中,每个整点被黑白染色。对于一个坐标为(x1,x2,…,xk)(x_1,x_2,\ldots,x_k)的点,他的颜色我们通过如下方式计算: 如果存在一维坐标是00,...
  • ez_yww
  • ez_yww
  • 2018-01-07 10:16:22
  • 99

[Lucas定理 数位DP 容斥原理] 2015 计蒜之道 复赛 360的产品试用体验

直接上官网题解吧:http://blog.jisuanke.com/?p=146 题意即求 其中 且 因为 47 是质数,如果把 ai, li, ri, xi 写作 47 进制数 因...
  • u014609452
  • u014609452
  • 2016-11-14 12:45:23
  • 672

4737: 组合数问题 lucas定理+数位DP

Description 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3)三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合...
  • baidu_36797646
  • baidu_36797646
  • 2018-03-19 09:29:29
  • 26

ACM_算法_Lucas定理

Lucas定理是用于求解C(n,m)%p的问题 这里小编用一张图: 这张图就很完整的说明了Lucas定理的内容,比较简单,也比较好理解,小编也就不多说了。 #include #incl...
  • RaAlGhul
  • RaAlGhul
  • 2016-06-24 14:19:20
  • 1864

hdu 3037 Saving Beans(lucas定理)(卢卡斯定理)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3037 解题思路: 题目可以转换成  x1+x2+……+xn=m 有多少组解,m在题...
  • piaocoder
  • piaocoder
  • 2015-09-14 20:32:40
  • 679

[lucas+数位DP] 2017 计蒜之道 复赛 E. 商汤智能机器人

这题就是,把坐标斜一下看,相当于一个网格图,可以对角线走。如果不能对角线走就是经典的组合数了,所以我们可以尝试枚举经过多少条对角线边来写出答案的式子,设 A=x+y2,B=x−y2 A=\frac {...
  • CHHNZ
  • CHHNZ
  • 2017-10-04 21:25:22
  • 135

Lucas定理应用分析——大组合数取模

首先给出Lucas(卢卡斯)定理:     有非负整数A、B,和素数p,A、B写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。 则组合数C(A,B)与C(a...
  • AC_Gibson
  • AC_Gibson
  • 2015-05-29 12:36:58
  • 922

[计蒜之道 复赛2017] 题解 (只有 A,E 两题)

前言:菜鸡博主打了一波计蒜之道,A了B,D,F3个水题后并不能取得什么进展(沉迷A题卡常无法自拔)             因为罚时爆炸,rk200+滚粗,%%%rk34的红太阳ZZT(听说ZZT如果...
  • Marco_L_T
  • Marco_L_T
  • 2017-06-12 21:57:17
  • 240

2017计蒜之道 复赛 BDF

一句话题解
  • sdfzyhx
  • sdfzyhx
  • 2017-06-10 18:59:21
  • 245
    个人资料
    持之以恒
    等级:
    访问量: 40万+
    积分: 1万+
    排名: 1230
    文章分类
    最新评论