POJ_3233_Matrix Power_矩阵快速幂/二分法

最近越来越爱写面向对象了,可是我还是没有对象。


题意:

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.



Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

可以找递推矩阵,写矩阵快速幂,(Sk, Ak)=(I, A; 0, A)*(Sk-1, Ak-1),或者快速幂的思维,直接二分,

S= ( I+A )*( A+A^2+...+A^(k/2) )


代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
#define mxn 40
int N,K,M;
struct matrix{
	int a[mxn][mxn];
	int n;
	void init(int x){
		n=x;
		memset(a,0,sizeof(a));
	}
	matrix(int x=0){
		init(x);
	}
	matrix operator + (const matrix& in)const{
		matrix ret(n);
		for(int i=0;i<n;++i)
			for(int j=0;j<n;++j)
				ret.a[i][j]=(a[i][j]+in.a[i][j])%M;
		return ret;
	}
	matrix operator * (const matrix& in)const{
		matrix ret(n);
		for(int i=0;i<n;++i)
			for(int j=0;j<n;++j)
				for(int k=0;k<n;++k){
					ret.a[i][j]+=a[i][k]*in.a[k][j];
					ret.a[i][j]%=M;
				}
		return ret;
	}
	void read(){
		for(int i=0;i<n;++i)
			for(int j=0;j<n;++j)
				scanf("%d",&a[i][j]);
	}
	void print(){
		for(int i=0;i<n;++i){
			for(int j=0;j<n;++j)
				!j ? printf("%d",a[i][j]) : printf(" %d",a[i][j]);
			puts("");
		}
	}
}A,ans,I;
matrix quick_power(matrix x,int k){
	if(k==1)	return x;
	matrix tem=quick_power(x,k/2);
	if(k%2)	return tem*tem*x;
	return tem*tem;
}
matrix solve(int k){
	if(k==1)	return A;
	matrix tem=solve(k/2);
	if(k%2)	return (I+quick_power(A,k/2))*tem+quick_power(A,k);
	return (I+quick_power(A,k/2))*tem;
}
int main(){
	while(scanf("%d%d%d",&N,&K,&M)!=EOF){
		A.init(N);
		I.init(N);
		for(int i=0;i<I.n;++i)	I.a[i][i]=1;
		A.read();
		ans=solve(K);
		ans.print();
	}
	return 0;
}


以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值