Matrix Power Series
Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 18450 | Accepted: 7802 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3
题意很简单,就是矩阵相乘,然后求和。自己做的时候快速幂,发现快速幂竟然还是TLE。
不知道怎么搞,看了网上的代码,发现这个求和的深搜sum2很经典,充分利用偶数求和,假设是求1到6的和,先将6除以2,求1到3的和,然后对1到3的和 乘以3就是4到6的和,再一相加就是1到6的和。这段代码的思想很巧妙,很喜欢。以后求1到n的和时候可以用得上~
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
struct matrix {
int m[35][35];
};
int n, mod;
long long ko;
matrix no;
matrix mu(matrix no1, matrix no2)
{
matrix t;
memset(t.m, 0, sizeof(t.m));
int i, j, k;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
for (k = 1; k <= n; k++)
{
t.m[i][j] += no1.m[i][k] * no2.m[k][j];
if (t.m[i][j] >= mod)
{
t.m[i][j] %= mod;
}
}
}
}
return t;
}
matrix multi(matrix no, long long x)
{
matrix b;
memset(b.m, 0, sizeof(b.m));
int i;
for (i = 1; i <= n; i++)
{
b.m[i][i] = 1;
}
while (x)
{
if (x & 1) b = mu(b, no);
x = x >> 1;
no = mu(no, no);
}
return b;
}
matrix add(matrix no1, matrix no2)
{
matrix t;
int i, j;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
t.m[i][j] = no1.m[i][j] + no2.m[i][j];
if (t.m[i][j] >= mod)
{
t.m[i][j] %= mod;
}
}
}
return t;
}
matrix sum2(long long i)//假设i为7
{
if (i == 1)return no;
if (i & 1)
return add(multi(no, i), sum2(i - 1));//7+6+...
else
{
long long k = i >> 1;//3
matrix s = sum2(k);//1 2 3
return add(s, mu(s, multi(no, k)));1 2 3 + 4 5 6
}
}
int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout);
int i, j;
cin >> n >> ko >> mod;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
scanf("%d", &no.m[i][j]);
if (no.m[i][j] >= mod)
{
no.m[i][j] %= mod;
}
}
}
no = sum2(ko);
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (j == 1)
cout << no.m[i][j];
else
cout << " " << no.m[i][j];
}
cout << endl;
}
//system("pause");
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。