1、CBVRP(Content-based Video Relevance Prediction Challenge)视频相关性预测挑战赛,这个比赛可以关注。
相关链接:
(1)Hulu × ACM MM 2019 | CBVRP视频相关性预测挑战赛圆满落幕
(3)一篇相关论文《Time-aware Session Embedding for Click-Through-Rate Prediction》
2、基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术是根据图像、图像的内容语义以及上下文联系进行查找,以图像语义特征为线索从图像数据库中检出具有相似特性的其它图像,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术。
这个方向也值得关注,图像与检索的结合。有关论文如下:
(2)Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning
3、CCF多媒体专委会三位委员当选 IEEE Fellow
2020年11月25日,国际电气和电子工程师协会(IEEE)公布了 2021年新晋 Fellow 名单。 在新增名单中共有 282位学者入选,其中包括CCF多媒体专委会 李厚强、马华东、汪萌 共三位委员,以表彰他们在多媒体领域所做出的突出贡献。
IEEE Fellow 简介
IEEE,全称“电气和电子工程师协会”(Institute of Electrical and Electronics Engineers),是美国的电子技术与信息科学工程师的协会,也是世界上最大的非营利性专业技术学会,致力于电气、电子、计算机工程和与科学有关的领域的开发和研究,在航空航天、信息技术、电力及消费性电子产品等领域已制定了900多个行业标准,现已发展成为具有较大影响力的国际学术组织。IEEE Fellow为该协会最高等级会员,是IEEE授予成员的最高荣誉,每年由IEEE同行专家在拥有高级(senior)或终身(life)等级的会员中评选,当选人需要对工程科学技术的进步或应用作出重大贡献,为社会带来重大价值。当选人数不超过IEEE当年会员总人数的1‰。
李厚强,教授,博士生导师,任职于中国科学技术大学电子工程与信息科学系,现为多媒体计算与通信教育部-微软重点实验室主任。国家“杰出青年基金”获得者(2013)、万人计划领军人才(2016)、长江学者特聘教授(2017)。主要研究方向包括:视频编码与通信、多媒体信息检索、计算机视觉与模式识别、人工智能与机器博弈等。
入选理由:为视频编码和多媒体内容分析做出贡献(for contributions to video coding and multimedia content analysis)
马华东,教授,博士生导师,现任北京邮电大学网络技术研究院院长、智能通信软件与多媒体北京市重点实验室主任。2009年获得国家杰出青年科学基金、国家973计划项目“物联网体系结构基础研究”首席科学家,“新世纪百千万人才工程”国家级人选。兼任中国计算机学会常务理事、物联网专委会副主任、多媒体专委会副主任,ACM SIGMOBILE CHINA主席,中国人工智能学会常务理事兼副秘书长,中国图形图像学会常务理事,以及IEEE T-MM、ACM T-IOT和MTAP等期刊编委。其长期从事物联网与传感网、多媒体理论与系统的研究工作,承担了包括国家973计划、863计划、国家科技支撑计划、国家自然科学基金重点项目等项目30多项,在物联网体系结构、多媒体传感网、群智感知网络、视频理解与分析、流媒体调度等研究中取得一批有国际影响力的原创或创新性成果,在系列著名国际期刊和会议发表200多篇论文,申请国内外发明专利50余项, 已获得授权40余项。获得教育部自然科学一等奖、CCF自然科学一等奖、北京市教学成果一等奖、中国电子学会科学技术奖一等奖等奖励。
入选理由:为多媒体传感器网络做出贡献(for contributions to multimedia sensor networks)
汪萌,教授,博士生导师,现任合肥工业大学计算机与信息学院院长。获得国家杰出青年科学基金及优秀青年科学基金资助,“万人计划” 青年拔尖人才。主要研究方向为多媒体信息处理,在其研究领域发表论文200余篇。获得10次国际期刊、会议论文奖励,包括多次国际顶级会议最佳论文奖。2014年获得ACM SIGMM Rising Star Award(该奖项的首届获得者)。2016年入选汤森路透“全球高被引科学家”。担任多个SCI期刊编委,包括IEEE TKDE、IEEE TCSVT、IEEE TNNLS等。
入选理由:为多媒体内容分析和检索做出贡献(for contributions to multimedia content analysis and retrieval)