electech6的博客

本人微信公众号:计算机视觉life(CV_life),关注计算机视觉、机器学习、人工智能...

胸片和CT断层图像是怎么来的?

点击“计算机视觉life”关注,置顶星标更快接收消息! 本文作者系医科大学青年教师,公众号菜单栏回复“医学” 进群交流 如何得到CT断层图像? 相信小伙伴体检的时候都拍过胸片,假如哪个不幸的小伙伴胸片有点“小问题”的话呢,还要再拍个CT图像让医生仔细看一下,那么这些图像有什么区别呢?...

2018-12-05 09:23:30

阅读数:107

评论数:0

竞赛 | Kaggle上有哪些有趣又多金的计算机视觉类比赛?

如今计算机视觉已经成为人工智能领域的热门研究对象,很多小伙伴都想通过一些有效的途径来学习和运用所学知识,有什么好的途径吗?计算机视觉life告诉你,最好的途径之一就是参加全球最有影响力的竞赛平台kaggle,不仅可以和全球的大佬们决战光明顶,还可以大获全胜后获得一笔丰厚的奖金,同时也在自己的履历上...

2018-11-28 18:58:45

阅读数:112

评论数:0

原来CNN是这样提取图像特征的。。。

对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了。将一张图像看做是一个个像...

2018-11-28 15:17:10

阅读数:257

评论数:0

从零开始一起学习SLAM | 你好,点云

本文提纲 先热热身 点云是啥 你知道点云优缺点吗? 点云库PCL:开发者的福音 PCL安装指北 炒鸡简单的PCL实践 留个作业再走 先热热身 小白:hi,师兄,好久不见 师兄:师妹好,上周单应矩阵作业做了吗? 小白:嗯,做了,这个单应矩阵真的挺有意思的。作业之外,我发现了一个...

2018-11-27 15:12:36

阅读数:57

评论数:0

2019年度【计算机视觉&机器学习&人工智能】国际重要会议汇总

简介 每年全世界都会举办很多计算机视觉(Computer Vision,CV)、 机器学习(Machine Learning,ML)、人工智能(Artificial Intelligence ,AI)领域的学术会议。笔者选取了其中影响力较大,有代表性的重要会议进行了汇总,特意按照时间进行了排序,方...

2018-11-23 13:00:00

阅读数:136

评论数:0

从零开始一起学习SLAM | 神奇的单应矩阵

小白最近在看文献时总是碰到一个奇怪的词叫“homography matrix”,查看了翻译,一般都称作“单应矩阵”,更迷糊了。正所谓:“每个字都认识,连在一块却不认识”就是小白的内心独白。查了一下书上的推导,总感觉有种“硬凑”的意味,于是又找到了师兄。。。 神奇的单应矩阵 小白:师兄~单应矩阵是什...

2018-11-15 11:39:39

阅读数:52

评论数:0

从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?

自从小白向师兄学习了李群李代数和相机成像模型的基本原理后,感觉书上的内容没那么难了,公式推导也能推得动了,感觉进步神速,不过最近小白在学习对极几何,貌似又遇到了麻烦。。。 小白:师兄,对极几何这块你觉得重要吗? 师兄:当然重要啦,这个是多视角立体视觉的核心啊 小白:那师兄一定得帮帮我讲清...

2018-11-07 09:51:05

阅读数:120

评论数:0

从零开始一起学习SLAM | 相机成像模型

上一篇文章《从零开始一起学习SLAM | 为啥需要李群与李代数?》以小白和师兄的对话展开,受到了很多读者的好评。本文继续采用对话的方式来学习一下相机成像模型,这个是SLAM中极其重要的内容,必须得掌握哦~ 小白:师兄,上次听你讲了李群李代数,有种“听君一席话胜读十年书”的赶脚~后来看书感觉容易理...

2018-11-01 11:41:35

阅读数:124

评论数:2

从零开始一起学习SLAM | 为啥需要李群与李代数?

很多刚刚接触SLAM的小伙伴在看到李群和李代数这部分的时候,都有点蒙蒙哒,感觉突然到了另外一个世界,很多都不自觉的跳过了,但是这里必须强调一点,这部分在后续SLAM的学习中其实是非常重要的基础,不信你看看大神们的论文就知道啦。 关于李群李代数,其实高翔的《视觉SLAM十四讲》里推导什么的挺清楚了...

2018-11-01 10:34:07

阅读数:99

评论数:0

从零开始一起学习SLAM | 三维空间刚体的旋转

刚体,顾名思义,是指本身不会在运动过程中产生形变的物体,如相机的运动就是刚体运动,运动过程中同一个向量的长度和夹角都不会发生变化。刚体变换也称为欧式变换。 视觉SLAM中使用的相机就是典型的刚体,相机一般通过人手持、机载(安装在机器人上)、车载(固定在车辆上)等方式在三维空间内运动,形式包括...

2018-10-23 21:58:48

阅读数:71

评论数:0

从零开始一起学习SLAM | 为什么要用齐次坐标?

从零开始一起学习SLAM | 为什么要用齐次坐标? 在涉及到计算机视觉的几何问题中,我们经常看到齐次坐标这个术语。本文介绍一下究竟为什么要用齐次坐标?使用齐次坐标到底有什么好处? 什么是齐次坐标? 简单的说:齐次坐标就是在原有坐标上加上一个维度: 使用齐次坐标有什么优势? 齐次坐标的...

2018-10-23 21:10:37

阅读数:100

评论数:0

从零开始一起学习SLAM | SLAM有什么用?

SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图、同时定位与地图构建。 「同时定位与地图构建」这几个词,乍一听起来非常拗口,为了不在一开始就吓跑读者,我们先不对其进行专业的解释,用一个日常生活中形象的例子来进行说...

2018-10-15 21:49:11

阅读数:119

评论数:0

从零开始一起学习SLAM | C++新特性要不要学?

学习SLAM,C++编程是必备技能。不过,大家在学校里学习的书本一般比较老,主要还是C++98那些老一套。 本文所谓的C++新特性是指C++11及其以后的C++14、C++17增加的新关键字和新语法特性。其中C++11是C++98以来最重要的一次变化,而其后的C++14、C++17是在该基础上的完...

2018-09-28 23:46:58

阅读数:73

评论数:0

从零开始一起学习SLAM | 学习SLAM到底需要学什么?

SLAM涉及的知识面很广,我简单总结了 “SLAM知识树” 如下所示: (公众号菜单栏回复 “树” 可获得清晰版) 可以看到涉及的知识面还是比较广的。这里放出一张SLAM圈子里喜闻乐见的表达悲喜交加心情的漫画图,大家可以感受一下: 每个学SLAM的小伙伴可以说都是冒着“头顶凉凉”的巨...

2018-09-10 23:07:42

阅读数:448

评论数:1

从零开始一起学习SLAM | 为什么要学SLAM?

在《零基础小白,如何入门计算机视觉?》中我提到过,计算机视觉的研究目前主要分为两大方向:基于学习的方法和基于几何的方法。其中基于学习的方法最火的就是深度学习,而基于几何方法最火的就是视觉SLAM。 SLAM将成为计算机视觉的下一个风口 在前几年计算机视觉的三大顶级会议(CVPR,ICCV...

2018-09-06 14:01:37

阅读数:280

评论数:0

制造机器人的现状和发展趋势

说到机器人,很多人脑海里就会浮现出一个长的像人一样的机器,但实际上,广义的机器人其实存在着多种形式,人形机器人只是其中的一种,机器人已经以各种各样的形式在我们日常生活中扮演非常重要的角色,比如生产线上的机械臂、无人驾驶车辆、无人机、扫地机器人、娱乐机器人、仿生机器人等等。如下图所示: 如此多...

2018-06-28 09:25:41

阅读数:431

评论数:0

AR VR MR 到底有啥区别?

本文首发于公众号:计算机视觉life。原文链接:AR VR MR 到底有啥区别? 介绍关于AR(Augmented Reality,增强现实)的一系列内容,我们很有必要对它的几个孪生兄妹:VR(Virtual Reality,虚拟现实)、MR(Mixed Reality,混合现实)也做一个介绍。...

2018-06-09 23:20:34

阅读数:1136

评论数:0

计算机视觉方向简介(四) | 深度相机室内实时稠密三维重建

本文首发于公众号:计算机视觉life。原文链接点这里 有什么用? 室内场景的稠密三维重建目前是一个非常热的研究领域,其目的是使用消费级相机(本文特指深度相机)对室内场景进行扫描,自动生成一个精确完整的三维模型,这里所说的室内可以是一个区域,一个房间,甚至是一整栋房屋。此外,该领域注重(一般是G...

2018-06-09 23:06:39

阅读数:930

评论数:0

零基础小白,如何入门计算机视觉?

计算机视觉是人工智能技术的一个重要领域,打个比方(不一定恰当),我认为计算机视觉是人工智能时代的眼睛,可见其重要程度。计算机视觉其实是一个很宏大的概念,下图是有人总结的计算机视觉所需要的技能树。 如果你是一个对计算机视觉一无所知的小白,千万不要被这棵技能树吓到。没有哪个人能够同时掌握以上所有...

2018-03-13 20:12:05

阅读数:4667

评论数:0

计算机视觉方向简介(三) | 单目微运动生成深度图

有什么用? 深度图在计算机视觉中有非常广泛的应用,比如前背景分割(用于背景虚化、美颜、重对焦等)、三维重建(用于机器人导航、3D打印、视效娱乐等)。目前能够直接快速获得深度图的方法就是使用深度相机,不同深度相机获取深度图原理见:《深度相机原理揭秘–飞行时间(TOF)》、《深度相机原理揭秘–双目立...

2018-02-23 19:16:45

阅读数:1184

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭