北邮新OJ101

http://code.bupt.edu.cn/problem/p/101/

#include<stdio.h>
#include<string>
#include<vector>
#include<sstream>
using namespace std;
int C(string s)
{
    int len=s.length();
    if(len==0)
        return 0;//空串不合法
    else
    {
        int ans=1;
        for(int i=0;i<len&&ans==1;i++)
        {
            if('0'<=s[i]&&s[i]<='9')
                ;
            else
                ans=0;
        }//截取出来的字符串含有不是数字的不合法
        if(ans==1)
        {
            stringstream ost;
            ost<<s;
            int num;
            ost>>num;
            if(0<=num&&num<=255)//不在0-255之间不合法
                ;
            else
                ans=0;
        }
        return ans;
    }
}
int main()
{
    int n;
    //while(scanf("%d",&n)!=EOF)
    scanf("%d",&n);
        for(int k=1;k<=n;k++)
        {
            getchar();
            char ss[50];
            scanf("%s",ss);
            string s=ss;
            int len=s.length();
            int ans=1;//标记是否合法
            int num=0;
            for(int i=0;i<len;i++)
                if(s[i]=='.')
                    num++;
            if(num!=3)
                ans=0;//要有三个.才是合法
            if(ans==1)//有三个.了,把4个字符串截取到vector里
            {
                int f=0;
                int l=0;
                vector<string> v;
                while(l<len)
                {
                    if(s[l]=='.')
                    {
                        string tmp=s.substr(f,l-f);
                        v.push_back(tmp);
                        f=l+1;
                        l++;
                    }
                    else
                        l++;
                }
                string tmp=s.substr(f,l-f);
                v.push_back(tmp);
                for(int i=0;i<4&&ans==1;i++)//依次判断4个字符串是否合法
                    if(C(v[i])==0)
                        ans=0;
            }
            if(ans==1)
                printf("Yes\n");
            else
                printf("No\n");
        }
    return 0;
}


### 关于北邮OJ平台上分数加法问题的解题思路 对于分数加法这一类题目,核心在于处理两个分数相加后的分子和分母计算以及化简操作。通常情况下,这类问题可以通过以下方式来解决: #### 1. 计算通分后的分子与分母 当给定两个分数 \(\frac{a}{b}\) 和 \(\frac{c}{d}\),为了求得它们之和,需要先找到一个公共分母 \(bd\) ,接着分别乘以其对应的倍数使得两者的分母相同,即得到的分子分别为 \(ad\) 和 \(cb\) 。因此,最终的结果为 \(\frac{(ad + cb)}{bd}\)[^1]。 #### 2. 对结果进行约分化简 由于直接通过上述方法得出的结果可能不是最简形式,所以还需要进一步简化这个形成的分数。这一步骤涉及到最大公约数 (GCD, Greatest Common Divisor) 的概念——利用欧几里得算法或其他高效的方法找出分子和分母的最大公因数,并以此为基础来进行除法运算从而达到简化的目的[^2]。 以下是 Python 实现该逻辑的一个例子: ```python from math import gcd def add_fractions(a, b, c, d): numerator = a * d + c * b denominator = b * d common_divisor = gcd(numerator, denominator) simplified_numerator = int(numerator / common_divisor) simplified_denominator = int(denominator / common_divisor) return f"{simplified_numerator}/{simplified_denominator}" print(add_fractions(1, 2, 3, 4)) ``` 此代码片段展示了如何接收四个参数作为输入(代表两个待相加的分数),并返回经过适当格式化的字符串表示的分数。这里使用了 `gcd` 函数来自标准库中的 `math` 模块用于查找最大公约数以便完成最后的化简过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值