[LeetCode][4]Median of Two Sorted Arrays解析 -Java实现

Q:

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

A:

这个题目大致是说给你两个被排序的nums1和nums2数组,找到这两个数组的中位数并且要求O(log(m+n))

O(log(m+n))这个形式很有意思,一般O(log(n))都是分治想法之下的结果(详情可以看我的数据分析与算法结构之后会更新几种常见的O()),那么我们用分治的想法考虑一下,如果有一个数组为x=m+n。那么我们假设对x进行二分得到mn,然后再对mn进行二分,直到二分后的数只剩2或者3,返回中位值。对于后半部分来说确实O(log(m+n)),但是如何把x=m+n重新排序又是一个问题,我们知道排序算法大多都是O(n^2)的。所以后面使用分治应该是没错的,错在前面不该合并。

我们仔细想想我们分治的目的是什么呢?我们分治的目的是为了在最后数值直有1或者2个的时候很容易的得出中位值。那么这个中位值跟分割前有什么关系呢?这才是解决问题的关键。

根据中位值我们可以得知:

1、两个中位值和分割前中位值没有直接关系,所以不可能用直接计算的方法计算出分割前中位值

2、两个中位值可以表达大小关系

明显1我们不可以用了,只能用2

接下来我们分析两个子序列m和n以及分割前序列x之间中位值的大小关系,得到如下性质:

1、x的中位值Mx肯定在m的中位值Mm和n的中位值Mn之间(假设Mm<Mn对于m的中位值Mm来讲前面肯定有m/2个数字,所以Mm的位置>=m/2,而<=m+n/2,同理Mn的位置肯定是>(n+m)/2)。

2、所以这个肯定在m序列中[m/2,m]的区间内,n序列的[1,n/2]内(Mm<Mn)

针对上面这两个性质,我终于找到了解法,距离我开始解题已经接近一小时了。贼啦难了。。。。-。-iii我得先去吃个饭了,现在都六点多了。等回来继续解。

吃完饭了,继续解析

你是否还记得有一年一个定理叫夹逼定理。跟这个似曾相识吗?没错,我就是这样想的。根据定理2不断的分割,直到m/2=m肯定可以得到我们需要的Mx。顺便说一句,这题真tm难。。。。。居然还要自己推定理。

代码如下(因为是算法题,重点不在解耦上,所以代码有些乱,也没有做解耦操作,代码多也是因为偶奇数的问题)

public class MedianofTwoSortedArrays {
	public static void main(String[] args){
		int[] m = {1,2,3,4,5,6};
		int[] n = {7,8,9,10,11,12};
		System.out.println(method(m, n));
	}

	private static double method(int[] m,int[] n) {
		double Mm = 0;
		double Mn = 0;
		double MmPosition = 0;
		double MnPosition = 0;
		if(m.length==1&&n.length==1){
			if(m[0]==n[0]){
				return m[0];
			}else{
				return ((double)m[0]+(double)n[0])/2;
			}
		}
		if(m.length==1){
			Mm = m[0];
		}else if(n.length==1){
			Mn = n[0];
		}else{
			if(m.length%2==1){//奇数
				MmPosition = (m.length+1)/2-1;
				Mm = m[(int)MmPosition];
			}else{//偶数
				MmPosition = ((double)m.length-1)/2;
				Mm = ((double)m[(int) Math.ceil(MmPosition)]+(double)m[(int) Math.floor(MmPosition)])/2;
			}

			if(n.length%2==1){//奇数
				MnPosition = (n.length+1)/2-1;
				Mn = n[(int)MnPosition];
			}else{//偶数
				MnPosition = ((double)n.length-1)/2;
				Mn = ((double)n[(int) Math.ceil(MnPosition)]+(double)n[(int) Math.floor(MnPosition)])/2;
			}
		}
		if(m.length==1||n.length==1){//数组分裂结束
			if(m.length==1){
				if(Mm<Mn){
					return method(m, Arrays.copyOfRange(n,0, (int) Math.floor(MnPosition)+1));
				}else if (Mm>Mn) {
					return method(Arrays.copyOfRange(n, (int) Math.ceil(MnPosition), n.length),m);
				}else if (Mm==Mn) {
					return Mn;
				}
			}else{
				if(Mm<Mn){
					return method(Arrays.copyOfRange(m, (int) Math.ceil(MmPosition), m.length), n);
				}else if (Mm>Mn) {
					return method(n, Arrays.copyOfRange(m,0, (int) Math.floor(MmPosition)+1));
				}else if (Mm==Mn) {
					return Mn;
				}
			}

		}else {

			if(Mm<Mn){
				return method(Arrays.copyOfRange(m, (int) Math.ceil(MmPosition), m.length), Arrays.copyOfRange(n,0, (int) Math.floor(MnPosition)+1));
			}else if (Mm>Mn) {
				return method(Arrays.copyOfRange(n, (int) Math.ceil(MnPosition), n.length), Arrays.copyOfRange(m,0, (int) Math.floor(MmPosition)+1));
			}else if (Mm==Mn) {
				return Mn;
			}
		}
		return 0;
	}
 


可以使用二分查找算法来解决这个问题。 首先,我们可以将两个数组合并成一个有序数组,然后求出中位数。但是,这个方法的时间复杂度为 $O(m + n)$,不符合题目要求。因此,我们需要寻找一种更快的方法。 我们可以使用二分查找算法在两个数组中分别找到一个位置,使得这个位置将两个数组分成的左右两部分的元素个数之和相等,或者两部分的元素个数之差不超过 1。这个位置就是中位数所在的位置。 具体来说,我们分别在两个数组中二分查找,假设现在在第一个数组中找到了一个位置 $i$,那么在第二个数组中对应的位置就是 $(m + n + 1) / 2 - i$。如果 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m$ 个,或者 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m + 1$ 个,则这个位置就是中位数所在的位置。 具体的实现可以参考以下 Java 代码: ```java public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; if (m > n) { // 保证第一个数组不大于第二个数组 int[] tmp = nums1; nums1 = nums2; nums2 = tmp; int t = m; m = n; n = t; } int imin = 0, imax = m, halfLen = (m + n + 1) / 2; while (imin <= imax) { int i = (imin + imax) / 2; int j = halfLen - i; if (i < imax && nums2[j - 1] > nums1[i]) { imin = i + 1; // i 太小了,增大 i } else if (i > imin && nums1[i - 1] > nums2[j]) { imax = i - 1; // i 太大了,减小 i } else { // i 是合适的位置 int maxLeft = 0; if (i == 0) { // nums1 的左边没有元素 maxLeft = nums2[j - 1]; } else if (j == 0) { // nums2 的左边没有元素 maxLeft = nums1[i - 1]; } else { maxLeft = Math.max(nums1[i - 1], nums2[j - 1]); } if ((m + n) % 2 == 1) { // 总元素个数是奇数 return maxLeft; } int minRight = 0; if (i == m) { // nums1 的右边没有元素 minRight = nums2[j]; } else if (j == n) { // nums2 的右边没有元素 minRight = nums1[i]; } else { minRight = Math.min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 $O(\log\min(m, n))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值