- 博客(13)
- 资源 (15)
- 收藏
- 关注
原创 keras写自己的LOSS函数,但是没办法进入调试怎么办?
非常简单,加一句话即可:tf.config.experimental_run_functions_eagerly(True)
2021-09-03 17:03:33 294 1
原创 经验风险和期望风险
经验风险:训练样本的损失(经验风险是局部概念,表示目标函数对训练数据集的样本的预测能力)期望风险:所有样本的损失(全局概念,针对所有样本的预测能力)
2021-07-06 15:22:36 237
原创 How to make PPT for international conference
Stepstomake PPT for international conference.Step-1: Choose a good theme for the Powerpoint presentationA good theme always catches the attention of the audience. The theme should be white in the background and try not to use any fancy background....
2020-11-30 21:31:30 256
原创 TensorFlowan安装出错;
tensorflow安装完成后出现:点击如下连接:https://support.microsoft.com/zh-cn/help/2977003/the-latest-supported-visual-c-downloads,下载并安装需要的可再发行软件包;安装后即可使用tensorflow。
2020-11-17 15:34:38 104
原创 Kmeans聚类中心确定
1. Conception:Dirichlet processesare a family ofstochastic processeswhose realizations (obversed values of a random variable ) are probability distributions.In other words, a Dirichlet process is a probability distribution whose range isa set of pr...
2020-09-04 17:21:02 7807
原创 RNN和LSTM相关资料
1.https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/2.https://machinelearningmastery.com/rnn-unrolling/3.https://pathmind.com/wiki/lstm4.https://adventuresinmachinelearning.com/keras-lstm-tutorial/
2020-08-03 14:18:53 117
原创 神经网络解读——一些关键词语和使用
1.卷积层的设定:No cov,1layer,2layer,...,nlayer。2.卷积层隐藏单元的数量:3.最优池大小:4.backpropagation through time (BPTT):BPTT算法是常用的训练RNN的方法,其实本质还是BP算法,只不过RNN处理时间序列数据,所以要基于时间反向传播,故叫随时间反向传播。BPTT的中心思想和BP算法相同,沿着需要优化的参数的负梯度方向不断寻找更优的点直至收敛。综上所述,BPTT算法本质还是BP算法,BP算法本质还是梯度下降法,那么求各
2020-08-03 10:10:52 297
原创 神经网络的基本作用
1.损失函数:均方误差是回归任务中最常用的性能度量,因此我们可试图让均方误差最小化。2. 激活函数:激活函数又称非线性映射,顾名思义,激活函数的引入是为了增加整个网络的表达能力(即非线性)。若干线性操作层的堆叠仍然只能起到线性映射的作用,无法形成复杂的函数。3. 卷积运算:卷积是一种有效的特征提取方法。卷积是一种局部操作,通过一定大小的卷积核作用于局部图像区域获得图像的局部信息。我们现在使用三种边缘卷积核(亦称滤波器),整体边缘滤波器、横向边缘滤波器和纵向边缘滤波器。4. 池化:池化(Pool.
2020-08-02 11:01:24 2301
原创 两个排序列表的相似性计算
1. 肯德尔等级相关系数(Kendall Tau) 我们可以用逆序对数量来量化两个排序列表的不一致程度。2. Spearman's Footrule Spearman's Footrule是两个排序列表之间的绝对距离,类似于文本编辑距离,度量把一个列表修改为另一个列表最少需要移动各个元素的距离的总和。...
2020-06-30 22:42:16 2001
Simultaneous Localization and Mapping with Power Network Electromagnetic Field
2019-04-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人