AI视野·今日CS.Robotics 机器人学论文速览
Thu, 7 Mar 2024
Totally 23 papers
👉上期速览✈更多精彩请移步主页
Daily Robotics Papers
3D Diffusion Policy Authors Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, Huazhe Xu 模仿学习提供了一种教授机器人灵巧技能的有效方法,然而,稳健且普遍地学习复杂技能通常需要大量的人类演示。为了解决这个具有挑战性的问题,我们提出了 3D 扩散策略 DP3,这是一种新颖的视觉模仿学习方法,它将 3D 视觉表示的力量融入扩散策略(一类条件动作生成模型)中。 DP3 的核心设计是利用紧凑的 3D 视觉表示,通过高效的点编码器从稀疏点云中提取。在我们涉及 72 个模拟任务的实验中,DP3 仅通过 10 次演示就成功处理了大多数任务,并以 55.3 的相对改进超越了基线。在 4 个真实的机器人任务中,DP3 展示了精确的控制,每个任务仅进行 40 次演示,成功率高达 85,并且在空间、视点、外观和实例等多个方面表现出出色的泛化能力。有趣的是,在真实的机器人实验中,DP3 很少违反安全要求,而基线方法经常这样做,需要人工干预。我们的广泛评估强调了 3D 表示在现实世界机器人学习中的至关重要性。 |
Reconciling Reality through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation Authors Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, Pulkit Agrawal 模仿学习方法需要大量的人类监督来学习对物体姿势、身体干扰和视觉干扰物变化稳健的策略。另一方面,强化学习可以自主探索环境以学习稳健的行为,但可能需要不切实际的大量不安全的现实世界数据收集。为了学习高性能、稳健的策略,而无需承担不安全的现实世界数据收集或广泛的人工监督的负担,我们提出了 RialTo,这是一种通过在数字孪生模拟环境中通过强化学习来增强现实世界模仿学习策略的系统,该环境是由少量真实数据即时构建的世界数据。为了实现这种真实到模拟到真实的管道,RialTo 提出了一个易于使用的界面,用于快速扫描和构建现实世界环境的数字孪生。我们还引入了一种新颖的逆蒸馏程序,可将现实世界的演示带入模拟环境中,以进行有效的微调,并且需要最少的人工干预和工程。我们针对现实世界中的各种机器人操作问题对 RialTo 进行了评估,例如将菜肴牢固地堆放在架子上、将书籍放在架子上以及其他六项任务。 RialTo 在不需要大量人工数据收集的情况下将策略稳健性提高了 67 以上。 |
Hierarchical Diffusion Policy for Kinematics-Aware Multi-Task Robotic Manipulation Authors Xiao Ma, Sumit Patidar, Iain Haughton, Stephen James 本文介绍了分层扩散策略 HDP,这是一种用于多任务机器人操作的分层代理。 HDP 将操纵策略分解为层次结构:预测远处下一个最佳末端效应器姿势 NBP 的高级任务规划代理,以及生成最佳运动轨迹的低级目标条件扩散策略。分解的策略表示使 HDP 能够处理长期任务规划,同时生成细粒度的低级别行动。为了在满足机器人运动学约束的同时生成上下文感知运动轨迹,我们提出了一种新颖的运动学感知目标条件控制代理,机器人运动学扩散器 RK 扩散器。具体来说,RK Diffuser 学习生成末端执行器姿势和关节位置轨迹,并通过可微运动学将精确但运动学未知的末端执行器姿势扩散器提炼为运动学感知但不太准确的关节位置扩散器。 |
Dexterous Legged Locomotion in Confined 3D Spaces with Reinforcement Learning Authors Zifan Xu, Amir Hossain Raj, Xuesu Xiao, Peter Stone 利用深度强化学习 RL 的运动控制器的最新进展在跨越具有挑战性的地形(例如崎岖的岩石、非刚性地面和光滑的表面)实现快速、稳健的运动方面取得了令人印象深刻的成果。然而,虽然这些控制器主要解决机器人下方的挑战,但相对较少的研究调查了腿部在有限的 3D 空间中的移动性,例如狭 |