LeetCode - 367. Valid Perfect Square

解题代码:

classSolution {

public:

    bool isPerfectSquare(int num) {

        if(num<=0)

            return false;

        while(num%2==0){

            if(num%4!=0)

                return false;

            else

                num/=4;

        }

        num--;

        if(num%4!=0)

            return false;

        num/=4;

        for(int i=0;i<=num/2;i++){

            if(i*(i+1)==num)

                return true;

        }

        return false;

 

    }

};

 

解题思路:

题目要求判断出给出的数是否完全平方。从完全平方的特性切入,首先,对于一个数为完全平方,它必然可以表示为(2n+1)2或者(2n)2,分别对应奇数和偶数,因此,对于偶数,它必然可以被4整除,且它除以4之后的结果依然是一个完全平方。所以,只要一直除以4,必然可以得到一个奇数的完全平方,而若一个偶数不能被4整除,它必然不是完全平方。而对于奇数,由于可以分解成4n2+4n+1,因此,它减一后必然能被4整除,若不能则表示它不是完全平方。而减一除以四之后,得到n2+n,也就是n*(n+1),即它等于某两个连续的整数的积。根据以上的条件,即可判断一个数是否完全平方。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值