1088. Rational Arithmetic (20)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u014646950/article/details/47754579

1088. Rational Arithmetic (20)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

For two rational numbers, your task is to implement the basic arithmetics, that is, to calculate their sum, difference, product and quotient.

Input Specification:

Each input file contains one test case, which gives in one line the two rational numbers in the format "a1/b1 a2/b2". The numerators and the denominators are all in the range of long int. If there is a negative sign, it must appear only in front of the numerator. The denominators are guaranteed to be non-zero numbers.

Output Specification:

For each test case, print in 4 lines the sum, difference, product and quotient of the two rational numbers, respectively. The format of each line is "number1 operator number2 = result". Notice that all the rational numbers must be in their simplest form "k a/b", where k is the integer part, and a/b is the simplest fraction part. If the number is negative, it must be included in a pair of parentheses. If the denominator in the division is zero, output "Inf" as the result. It is guaranteed that all the output integers are in the range of long int.

Sample Input 1:
2/3 -4/2
Sample Output 1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
Sample Input 2:
5/3 0/6
Sample Output 2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf
给出两个分数,求他们的和,差,积,商(分数四则运算);
通过辗转相除gcd获得最大公约数;可以把两个分数化为最简的形式;
重点是输出的格式
如果分母为零,那么输出的是Inf;
如果值为零,那么0
如果是正数,那么化为对应K a/b  或者K 或者a/b (其中a/b为真分数形式)
如果是负数,一定要有括号,化为对应的-K a/b 或者-K 或者-a/b

评测结果

时间结果得分题目语言用时(ms)内存(kB)用户
8月18日 16:49答案正确201088C++ (g++ 4.7.2)1300datrilla

测试点

测试点结果用时(ms)内存(kB)得分/满分
0答案正确11809/9
1答案正确11805/5
2答案正确13003/3
3答案正确13003/3
#include<iostream>
#include<string>    
using namespace std;
long int gcd(long int beichushu, long int chushu)
{
  return chushu == 0 ?  beichushu: gcd(chushu, beichushu%chushu);
} 
void GaiBianXingShi(long int &a, long int &b)
{
  int G = gcd(b, a);
  a /= G;
  b /= G; 
} 
void shuchuyige(long int a, long int b)
{ 
  if (b == 0)cout << "Inf";
  else 
  {
      if (b < 0){ a = -a; b = -b; }
    bool parentheses = false;
    if (a < 0)parentheses = true;
    if (parentheses)cout << "(";
    if (a%b == 0)cout << a / b;
    else  
    {  
      if (a / b != 0)
      { 
        cout << a / b << " ";  
        if (a%b < 0)a = -a%b;
      } 
      cout << a%b<<"/"<<b;
    } 
    if (parentheses)cout << ")";
  }
}
void JiaFa(long int*a, long int *b,long int G)
{
  b[2] = b[1] * b[0] / G;
  a[2] = a[0] * b[1] / G + a[1] * b[0] / G;
  G = gcd(b[2], a[2]);
  a[2] /= G;
  b[2] /= G;
  shuchuyige(a[0], b[0]);
  cout << " + ";
  shuchuyige(a[1], b[1]);
  cout << " = ";
  shuchuyige(a[2], b[2]);
  cout << endl;
}
void JianFa(long int*a, long int *b, long int G)
{
  b[2] = b[1] * b[0] / G;
  a[2] = a[0] * b[1] / G - a[1] * b[0] / G;
  G = gcd(b[2], a[2]);
  a[2] /= G;
  b[2] /= G;
  shuchuyige(a[0], b[0]);
  cout << " - ";
  shuchuyige(a[1], b[1]);
  cout << " = ";
  shuchuyige(a[2], b[2]);
  cout << endl;
}
void ChengFa(long int*a, long int *b, long int G)
{
  b[2] = b[1] * b[0] ;
  a[2] = a[0] * a[1] ;
  G = gcd(b[2], a[2]);
  a[2] /= G;
  b[2] /= G;
  shuchuyige(a[0], b[0]);
  cout << " * ";
  shuchuyige(a[1], b[1]);
  cout << " = ";
  shuchuyige(a[2], b[2]);
  cout << endl;
}
void ChuFa(long int*a, long int *b, long int G)
{
  b[2] = b[0] * a[1];
  a[2] = b[1] * a[0];
  G = gcd(b[2], a[2]);
  a[2] /= G;
  b[2] /= G;
  shuchuyige(a[0], b[0]);
  cout << " / ";
  shuchuyige(a[1], b[1]);
  cout << " = ";
  shuchuyige(a[2], b[2]);
  cout << endl;
}
int main()
{
  long int a[3], b[3],Gmax;
  char ctemp;
  cin >> a[0]>> ctemp >> b[0]>> a[1] >> ctemp >> b[1]; 
  if (0 == b[0] || 0 == b[1])cout << "Inf" << endl;
  else
  {
    GaiBianXingShi(a[0], b[0]);
    GaiBianXingShi(a[1], b[1]); 
    Gmax = gcd(b[0], b[1]);  
    JiaFa(a, b, Gmax);
    JianFa(a, b, Gmax);
    ChengFa(a, b, Gmax);
    ChuFa(a, b, Gmax);
  }
  system("pause");
  return 0;
}
展开阅读全文

Toothpick Arithmetic

07-18

Problem DescriptionnA toothpick expression uses toothpicks to represent a positive integer. The expression consists of operands and operators. nnEach operand consists of one or more vertical toothpicks ("|"); the value of the operand is the number of toothpicks. nnThe operators that can appear in an expression are addition and multiplication. The addition operator is the plus sign ("+"), which consists of one vertical and one horizontal toothpick. The multiplication operator is the letter "x", which also consists of two toothpicks. Multiplication has precedence over addition. nnThe expression must begin with an operand. Thereafter, operators and operands alternate. Finally, the expression must end with an operand. Given a positive integer, your program must represent it as a toothpick expression, using the smallest number of toothpicks. n nnInputnThe input file will consist of one or more lines; each line will contain data for one instance of the problem. More specifically, each line will contain one positive integer, not exceeding 5000. nn nnOutputnEach line of input will give rise to one line of output, consisting of: the number of toothpicks used in the expression, the expression, and the given integer from the input, formatted as shown in the sample output. The word "toothpicks" (even if the answer is 1) will be preceded by one blank space and followed by a colon and one blank space. An equal sign (but no blank spaces) will separate the expression from the given number. The expression should not contain any spaces. nnIf there are multiple expressions which use the smallest number of toothpicks, any such expression is acceptable. n nnSample Inputn35n37n53n nnSample Outputn14 toothpicks: |||||||x|||||=35n17 toothpicks: ||||||x||||||+|=37n21 toothpicks: |||||x|||||x||+|||=53 问答

没有更多推荐了,返回首页